Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sakura Kinomoto
Xem chi tiết
Phan Thanh Tịnh
21 tháng 9 2016 lúc 23:02

Nhận xét : Lũy thừa bậc chẵn hay giá trị tuyệt đối của 1 số hữu tỉ luôn lớn hơn hoặc bằng 0(bằng 0 khi số hữu tỉ đó là 0)

1)\(\left(2x+\frac{1}{3}\right)^4\ge0\Rightarrow\left(2x+\frac{1}{3}\right)^4-10\ge-10\).Vậy GTNN của A là -10 khi :

\(\left(2x+\frac{1}{3}\right)^4=0\Rightarrow2x+\frac{1}{3}=0\Rightarrow2x=\frac{-1}{3}\Rightarrow x=\frac{-1}{6}\)

\(|2x-\frac{2}{3}|\ge0;\left(y+\frac{1}{4}\right)^4\ge0\Rightarrow|2x-\frac{2}{3}|+\left(y+\frac{1}{4}\right)^4-1\ge-1\).Vậy GTNN của B là -1 khi :

\(\hept{\begin{cases}|2x-\frac{2}{3}|=0\Rightarrow2x-\frac{2}{3}=0\Rightarrow2x=\frac{2}{3}\Rightarrow x=\frac{1}{3}\\\left(y+\frac{1}{4}\right)^4=0\Rightarrow y+\frac{1}{4}=0\Rightarrow y=\frac{-1}{4}\end{cases}}\)

2)\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6\ge0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)^6\le0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)+3\le3\).Vậy GTLN của C là 3 khi :

\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6=0\Rightarrow\frac{3}{7}x-\frac{4}{15}=0\Rightarrow\frac{3}{7}x=\frac{4}{15}\Rightarrow x=\frac{4}{15}:\frac{3}{7}=\frac{28}{45}\)

\(|x-3|\ge0;|2y+1|\ge0\Rightarrow-|x-3|\le0;-|2y+1|\le0\Rightarrow-|x-3|-|2y+1|+15\le15\)

Vậy GTLN của D là 15 khi :\(\hept{\begin{cases}|x-3|=0\Rightarrow x-3=0\Rightarrow x=3\\|2y+1|=0\Rightarrow2y+1=0\Rightarrow2y=-1\Rightarrow y=\frac{-1}{2}\end{cases}}\)

Nguyen Thi Yen Anh
Xem chi tiết
Nguyễn Linh Chi
3 tháng 6 2019 lúc 13:46

Câu hỏi của đào mai thu - Toán lớp 7 - Học toán với OnlineMath

eM THAM khảo nhé!

hoàng ngân
Xem chi tiết
Đặng Minh Triều
15 tháng 5 2016 lúc 20:31

a) Ta có: \(\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)(với mọi x,y)

=>\(C=\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge-10\)

Dấu "=" xảy ra khi x=-2;y=1/5

Vậy GTNN của C là -10 tại x=-2;y=1/5

Đặng Minh Triều
15 tháng 5 2016 lúc 20:34

b)Ta có: \(\left(2x-3\right)^2\ge0\Rightarrow\left(2x-3\right)^2+5\ge0\Rightarrow D=\frac{4}{\left(2x-3\right)^2+5}\le\frac{4}{5}\)

Dấu "=" xảy ra khi: x=3/2

Vậy GTLN của D là : 4/5 tại x=3/2

Hoàng Phúc
15 tháng 5 2016 lúc 20:35

b)B có GTLN <=> (2x-3)2+5 có GTNN

Vì (2x-3)2 > 0 với mọi x

=>(2x-3)2+5 > 5 với mọi x

=>GTNN của (2x-3)2+5 là 5

=>D = \(\frac{4}{\left(2x-3\right)^2+5}\) < \(\frac{4}{5}\)

=>GTLN của D là 4/5

Dấu "=" xảy ra <=> (2x-3)2=0<=>x=3/2

Vậy..............

Thái Viết Nam
Xem chi tiết
satoshi-gekkouga
Xem chi tiết
Đào Thị Thảo Nguyên
Xem chi tiết
Le Thi Khanh Huyen
3 tháng 8 2016 lúc 18:05

\(D=\frac{15}{3\left|2x-1\right|+5}\)

\(D\)đạt giá trị nhỏ nhất khi \(\left|3\left|2x-1\right|+5\right|\)đạt giá trị lớn nhất 

\(\left|2x-1\right|\ge0\)

\(\Rightarrow3\left|2x-1\right|\ge0\)

\(\Rightarrow3\left|2x-1\right|+5\ge5\)

\(\Rightarrow D\ge\frac{15}{5}=3\)

\(\Rightarrow D_{min}=3\Leftrightarrow2x-1=0\rightarrow x=\frac{1}{2}\)

o0o I am a studious pers...
3 tháng 8 2016 lúc 18:05

Để \(\frac{15}{3\left|2x-1\right|+5}\)đạt giá trị LN thì \(3\left|2x-1\right|+5\)phải đạt GTNN

\(3\left|2x-1\right|+5\ge5\)

\(MIN=5\Leftrightarrow2x-1=0\Rightarrow x=\frac{1}{2}\)

Vậy GTLN của \(\frac{15}{3\left|2x-1\right|+5}\ge\frac{15}{5}\ge3\)

Hồng Phúc Phạm
Xem chi tiết
Chibi
5 tháng 4 2017 lúc 15:52

a. (x+2)2 >= 0

(y-1/5)2 >= 0

=> MinC = -10 khi x = -2, y = 1/5

b. (2x-3)2 + 5 >= 5

D đạt max khi mẫu đạt min (Mẫu > 0)

=> MaxD = 4/5 khi x = 3/2

hfbgdfd srtdfv
Xem chi tiết
ST
24 tháng 9 2017 lúc 17:40

a, Vì \(\left|\frac{2}{5}-x\right|\ge0\Rightarrow\frac{5}{2}\left|\frac{2}{5}-x\right|\ge0\Rightarrow-\frac{5}{2}\left|\frac{2}{5}-x\right|\Rightarrow D=3-\frac{5}{2}\left|\frac{2}{5}-x\right|\le3\)

Dấu "=" xảy ra khi \(\frac{5}{2}\left|\frac{2}{5}-x\right|=0\Rightarrow x=\frac{2}{5}\)

Vậy GTLN của D = 3 khi x = 2/5

b, Vì \(\left|\frac{5}{3}-x\right|\ge0\Rightarrow P=-\left|\frac{5}{3}-x\right|\le0\)

Dấu "=' xảy ra khi x = 5/3

VẬy GTLN của P = 0 khi x = 5/3

dao xuan tung
Xem chi tiết