Tính
\(A=\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ab}\)
Với \(a,b,c\ne0\)và \(a+b+c=0\)
Cho \(a,b,c\ne0\)và a - b + c = 0.
Tính: \(\frac{ab}{a^2+b^2-c^2}+\frac{bc}{b^2+c^2-a^2}+\frac{ac}{a^2+c^2-b^2}\).
\(a-b+c=0\Rightarrow a=b-c;b=a+c;c=b-a\)
\(\Rightarrow a^2=b^2-2bc+c^2;b^2=a^2+2ac+c^2;c^2=b^2-2ab+a^2\)
\(\text{Suy ra: }\frac{ab}{a^2+b^2-c^2}+\frac{bc}{b^2+c^2-a^2}+\frac{ac}{a^2+c^2-b^2}\)
\(=\frac{ab}{-2bc+2b^2}+\frac{bc}{2ac+2c^2}+\frac{ac}{-2ab+2a^2}\)
\(=\frac{a}{2.\left(b-c\right)}+\frac{b}{2.\left(a+c\right)}+\frac{c}{-2.\left(b-a\right)}\)
\(=\frac{a}{2a}+\frac{b}{2b}+\frac{c}{-2c}=\frac{1}{2}+\frac{1}{2}-\frac{1}{2}=\frac{1}{2}\)
Cho \(a+b+c\ne0\) và \(a\left(a^2-bc\right)+b\left(b^2-ac\right)+c\left(c^2-ab\right)=0\)
Tính \(P=\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\)
\(a\left(a^2-bc\right)+b\left(b^2-ac\right)+c\left(c^2-ab\right)=0\)
\(a^3-abc+b^3-abc+c^3-abc=0\)
\(a^3+b^3+c^3-3abc=0\)
\(\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
\(\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-bc-ca\right)-3ab\left(a+b+c\right)=0\)
\(\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-bc-ca-3ab\right)=0\)
\(\left(a+b+c\right)\left(a^2+b^2+c^2-bc-ca-ab\right)=0\)
Mà \(a+b+c\ne0\)
\(\Rightarrow a^2+b^2+c^2-bc-ca-ab=0\)
\(a^2+b^2+c^2=ab+bc+ca\)
\(2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)
\(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
mình làm hơi tắt.
Đến đây bạn tự làm nốt nhé~
Cho \(a,b,c\in Z;abc\ne0;\frac{a^2+b^2}{2}=ab;\frac{b^2+c^2}{2}=bc;\frac{a^2+c^2}{2}=ac\)
Tính : \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Ta có : \(\frac{a^2+b^2}{2}=ab\Rightarrow a^2+b^2=2ab\)
\(\Rightarrow a^2-ab+b^2=0\Rightarrow\left(a-b\right)^2=0\Rightarrow a=b\)
Tương tự : \(\frac{b^2+c^2}{2}=bc\Rightarrow b=c\)
\(\frac{a^2+c^2}{2}=ac\Rightarrow a=c\)
Áp dụng t/c bắc cầu ta dc : \(a=b=c\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=3a\times3=9a\)
=>a2+b2=2ab
=>a2-2ab+b2=0
=>(a-b)2=0=>a=b
tương tự=>b=c
=>a=b=c
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=3a.3=9a\)
Cho \(a,b,c\in Z;abc\ne0,\frac{a^2+b^2}{2}=ab;\frac{b^2+c^2}{2}=bc,\frac{a^2+c^2}{2}=ac\)
Tính : \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\).
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1+\frac{a}{b}+\frac{b}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)
\(=\left(1+1+1\right)+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)
\(=3+\frac{a^2+b^2}{ab}+\frac{a^2+c^2}{ac}+\frac{b^2+c^2}{bc}\)
\(=3+\frac{a^2+b^2}{\frac{a^2+b^2}{2}}+\frac{a^2+c^2}{\frac{a^2+c^2}{2}}+\frac{b^2+c^2}{\frac{b^2+c^2}{2}}\)
\(=3+2+2+2=9\)
Cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
Tính \(N=\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ac}{c^2}\left(a,b,c\ne0\right)\)
a² + b² + c² + d² + e² ≥ a(b + c + d + e)
Ta có: a² + b² + c² + d² + e²
= (a²/4 + b²) + (a²/4 + c²) + (a²/4 + d²) + (a²/4 + e²)
Lại có: (a/2 - b)² ≥ 0 <=> a²/4 - ab + b² ≥ 0 <=> a²/4 + b² ≥ ab
Tương tự ta có:
. a²/4 + c² ≥ ac
. a²/4 + d² ≥ ad
. a²/4 + e² ≥ ae
--> (a²/4 + b²) + (a²/4 + c²) + (a²/4 + d²) + (a²/4 + e²) ≥ ab + ac + ad + ae
<=> a² + b² + c² + d² + e² ≥ a(b + c + d + e) --> đ.p.c.m
Dấu " = " xảy ra <=> a/2 = b = c = d = e
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}\right)^3=-\frac{1}{c^3}\)
\(\Leftrightarrow\frac{1}{a^3}+\frac{3}{a^2b}+\frac{3}{ab^2}+\frac{1}{b^3}=-\frac{1}{c^3}\)
\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=-\frac{3}{a^2b}-\frac{3}{ab^2}=-\frac{3}{ab}\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
\(\Rightarrow abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)=\frac{3}{abc}.abc\)
\(\Rightarrow\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ac}{b^2}=3\)
Cho \(a+b+c=0\) \(\left(a\ne0;b\ne0;c\ne0\right)\)
Cmr \(\frac{a^2}{bc}+\frac{b^2}{ca}+\frac{c^2}{ab}-3=0\)
ta thấy từ a+b+c=0 \(\Leftrightarrow a^3+b^3+c^3=3abc\)(được cm nhiều trg sách cx như trên mạng)
\(\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ab}=\frac{a^3+b^3+c^3}{abc}=\frac{3abc}{abc}=3\)
suy ra đpcm
Ta có : \(a+b+c=0\)
Lập phương 2 vế lên ta có :
\(\left(a+b+c\right)^3=0^3\)
\(\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
mà \(a+b+c=0\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\a+c=-b\end{cases}}\)
\(\Leftrightarrow a^3+b^3+c^3+3\left(-a\right)\left(-b\right)\left(-c\right)=0\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\)
Ta lại có:
\(\frac{a^2}{bc}+\frac{b^2}{ca}+\frac{c^2}{ab}-3=0\)
\(\Rightarrow\frac{a^3}{abc}+\frac{b^3}{abc}+\frac{c^3}{abc}-3=0\)
\(\Leftrightarrow\frac{a^3+b^3+c^3}{abc}-3=0\)
Theo chứng minh trên có : \(a^3+b^3+c^3=3abc\)
\(\Rightarrow\frac{3abc}{abc}-3=0\)
\(\Leftrightarrow3-3=0\)( đúng )
Vậy với \(a+b+c=0\left(a\ne0;b\ne0;c\ne0\right)\)thì \(\frac{a^2}{bc}+\frac{b^2}{ca}+\frac{c^2}{ab}-3=0\)
Đến chỗ: \(a^3+b^3+c^3=3abc\)
=> \(\frac{a^3+b^3+c^3}{abc}=\frac{3abc}{abc}\)
=> \(\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ab}=3\)
=> \(\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ab}-3=0\) là đc rồi em nhé!
Dòng thứ 9 trở xuống là khồn đúng đâu nhé!
CHO \(a,b,c\ne0\) THỎA MÃN
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ac}{a+c}\)
Tính \(M=\frac{ab+bc+ac}{a^2+b^2+c^2}\)
a) Cho \(ab+bc+ca=abc\ne0\)và \(a+b+c=0\) Chứng minh \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=1\).
b) a,b,c >0 và a+b+c=1 . Chứng minh \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)
Cho \(\hept{\begin{cases}a+b\ne0\\c\ne0\\c^2=2\left(ac+bc-ab\right)\end{cases}}\)CMR:\(\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\frac{a-c}{b-c}\)