Cho N = dcba (gạch trên đầu dcba) , chứng minh rằng:
a/ N chia hết cho 4 <=> a+2b chia hết cho 4
b/ N chia hết cho 8 <=> a+2b+4c chia hết cho 8
c/ N chia hết cho 16 <=> a+2b+4c+8d chia hết cho 16 (b chẵn)
cho n =dcba
chứng minh rằng
a, n chia hết cho 4 <=> a+2b chia het cho 4
b, n chia hết cho 8 <=> a+2b+4c chia hết cho 48
n chia hết cho 16 <=> a+2b+ 4c +8d chia hết cho 16 và b là số chẵn
b, dcba = 1000d +100c +10b +a=(1000d+96c+8b)+(a+2b+4c)
mà 100d +96c +8b chia hết cho 8
suy ra a+2b+4c chia hết cho 8(đpcm)
Ta có : \(n=\overline{dcba}=1000d+100c+10b+a\)
\(=\left(1000d+100c+8b\right)+\left(2b+a\right)\)
\(=4\left(250d+25c+2b\right)+\left(2b+a\right)\)
Vì n chia hết cho 4 và 4(250d+25c+2b) chia hết cho 4 nên a+2b chia hết cho 4.
câu b) tương tự, ta có :\(n=8\left(125d+12c+b\right)+\left(a+2b+4c\right)\)
mà n chia hết cho 8 ; 8(125d+12c+b) chia hết cho 8 => a+2b+4c chia hết cho 8.
câu c) : \(n=16\left(62d+6c+\frac{b}{2}\right)+\left(a+2b+4c+8d\right)\)
vì b chẵn => 16(62d+6c+b/2) chia hết cho 16 mà n chia hết cho 16; => a+2b+4c+8d chia hết cho 16.
Cho N=dcba . CMR :
a) N chia hết cho 4 (=) (a+2b) chia hết cho 4 .
b) N chia hết cho 16 (=) (a+2b+4c+8d) chia hết chố với b chẵn .
c) N chia hết cho 29 (=) (d+2c+9b+27a) chia hết cho 29
cho số N =dcba.CMR:
a, N chia hết cho 4 <->a+2b chia hết cho 4
b, N chia hết cho 8 <-> a+2b+4c chia hết cho 8
c, N chia hết cho 16<->a +2b+4c+8d chia hết cho 16 với b chẵn
Tính làm nhưng buồn ngủ qá! để mai nhs! ngủ ngon, msđ
Cho A= dcba . CMR: A chia hết cho 16 biết rằng a + 2b +4c + 8d chia hết cho 16.
CMR nếu dcba chia hết cho 16 thì 8d+4c+2b+a chia hết cho 16(b chẵn)
Bài 1 : CMR m+4n chia hết cho 13 <=>10m + n chia hết cho 13 với mọi n,m thuộc N
Bài 2 : Có hay ko 2 STN x,y sao cho (x+y)(x-y)=2002
Cho abc chia hết cho 4 (a,b chẵn) .CMR :
a) c chia hết cho 4 b) bac chia hết cho 4
Bài 3 : a)N chia hết cho 4 <=>a+2b chia hết cho 4
b)N chia hết cho 8 <=> a+2b+4c chia hết cho 8
c)N chia hết cho 16<=> a+2b+4c+8d chia hết cho 16
( N=dcba)
Giúp mình với ! Mai mình phải nộp rùi
cho A = dcba ( a thuộc N )
a) chứng minh A chia hết cho 4 khi và chỉ khi ( 2b + a ) chia hết cho 4
b) chứng minh a chia hết cho 8 khi và chỉ khi ( a+ 2b +4c ) chia hết cho 8
a) dcba = 1000d + 100c + 10b + a
= 1000d + 100c + 8b + (2b + a)
Thấy 100d + 100c + 8d chia hết cho 4
=> 2a +b chia hết cho 4
b) Tương tự
Bài 1 :Cho N= dcba chia hết cho 4 . CMR :
a) N chia hết cho 4 tương đương a+ 2b chia hết cho 4
b) N chia hết cho 8 tương đương a+2b+4c chia hết cho 8
c)N chia hết cho 16 tương đương a+2b+4c+8d chia hết cho 16
Bài 2 : Tìm các số tự nhiên n sao cho :
a) n2 + 2n +6 chia hết cho n+4
b) n2+n+1 chia hết cho n+1
MN giúp mình:)))
Cho m dcba.Chứng minh rằng m chia hết cho 16⇔a 2b 4c 8d chia hết cho 16