a; 3x - 2 = x + 7
b) \(\frac{2}{3}x-\frac{5}{4}=\frac{7}{5}x-\frac{8}{5}\)
2, tính hợp lí: \(\frac{0,375-0,3+\frac{3}{11}+\frac{3}{12}}{-0,625+0,5-\frac{5}{11}-\frac{5}{12}}+\frac{1,5+1-0,75}{2,5+\frac{5}{3}-1,25}\)
A = 2/ x-1 .tim dieu kien cua x de A la phan so . tim A khi x = 2 ; x = -3. tim dieu kien cua x de A la so nguyen ( A thuoc Z )
tim X biet aaaa: X = a
tim X biet X x a = a0a0a0
a) \(aaaa:x=a\Rightarrow aaaa:a=x\Rightarrow x=1111\)
b) \(x\times a=a0a0a0\Rightarrow x=a0a0a0:a\Rightarrow x=101010\)
A=2004+\(\sqrt{2003-x}\)
a)Tim x de A co nghia
b)Tim x de A=2005
c)Tim GTNN cua A
Lời giải:
\(A=2004+\sqrt{2003-x}\)
a)Để \(A\) có nghĩa thì \(2003-x\ge0\Leftrightarrow x\le2003\)
b) Ta có:
\(A=2004+\sqrt{2003-x}=2005\)
Tương đương với:
\(\sqrt{2003-x}=1\)
Suy ra :\(\left|2003-x\right|=1\Rightarrow\left[{}\begin{matrix}2003-x=1\\2003-x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2002\\x=2004\end{matrix}\right.\)
c) Ta có:
Để \(A\) nhỏ nhất thì \(\sqrt{2003-x}\) cũng phải nhỏ nhất
\(\sqrt{2003-x}\ge0\Leftrightarrow2004+\sqrt{2003-x}\ge2004\)
Dấu "=" xảy ra khi: \(x=2003\)
Cho A=42+60+x
a/ tim x de Achia het cho 6
b/tim x de A ko chia het cho 6
c/tim x de A chia 6 du 3
Tim x thuoc Z de A thuoc Z va tim gia tri do .
a/ A= x+3/x-2 .
b/ A= 1-2x/x+3 .
a, Cho F(x) = a x+b . Tim a,b biet f(0) = 3 va F(2) =-1
b, Cho F(x) =a x+ b. Tim a,b biet F(1) = -1 va F(-2) = 8
c, Cho F(x) =a x +b .tim a,b biet F(0) = 1 va F(-2) = -9
Bai 1: Tim ab ; biet ab = b x 9
Bai 2 : Tim ab, biet :
a) ab x 5 = 2ab b) ab = 4ab / 9.
Bai 3 : Tim ab, biet : a 2 = b x 5
Bai 4 : Tim cac so ab biet :
a) a x3 = bx9 b) a x4 = b x6.
Bai 5 :
a) Tim abc, biet a , b , c khac nhau va : a x bc = 91.
b) Tim a , b , c khac nhau biet aa x bc = 1001
Tim x
a, tim cac so nguyen x,y sao cho y/3 - 1/x = 1/3
b,tim cac so a va b biet a - b =5 va UCLN (a,b)/BCNN (a,b) =1/6
Luu y a/b tua la a phan b
cho tong A=12+15+21+x
a)tim x de A chia het cho 3
b)tim x de a ko chia het cho 3
1) Tim a, b thuoc Q biet: a-b=2(a+b)=a:b
2) Tim x thuoc Q sao cho: (x-1)(x+3)<0