Tinh: A=1+3/2^3+4/2^4+5/2^5+...+100/2^100
cau 1
tinh A=1 +\(\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+....+\frac{100}{2^{100}}\)
Tinh A = \(1+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\)
\(2.A=2+\frac{3}{2^2}+\frac{4}{2^3}+\frac{5}{2^4}+...+\frac{100}{2^{99}}\)
=> 2.A - A = \(\left(2+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{100}{2^{99}}\right)-\left(1+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{100}{2^{100}}\right)\)
=> A = \(\left(2+\frac{3}{2^2}-1-\frac{100}{2^{100}}\right)+\left(\frac{4}{2^3}-\frac{3}{2^3}\right)+\left(\frac{5}{2^4}-\frac{4}{2^4}\right)+...+\left(\frac{100}{2^{99}}-\frac{99}{2^{99}}\right)\)
A = \(1+\frac{3}{2^2}-\frac{100}{2^{100}}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}=\left(1+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\right)+\frac{2}{2^2}-\frac{100}{2^{100}}\)
Tính B = \(1+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)
2.B = \(2+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\) => 2.B - B = \(1+\frac{1}{2}-\frac{1}{2^{99}}\)=> B = \(\frac{3}{2}-\frac{1}{2^{99}}\)
Vậy A = \(\frac{3}{2}-\frac{1}{2^{99}}+\frac{2}{2^2}-\frac{100}{2^{100}}=2-\frac{1}{2^{99}}-\frac{100}{2^{100}}=2=\frac{2^{101}-102}{2^{100}}\)
Tinh
A=1×2×3+2×3×4+3×4×5+...+98×99×100
B=1×3+2×4+3×5+4×6+...+49×51+48×50
tinh nhanh A=1*2+2*3+3*4+4*5+...+99*100
A = 1*2+2*3+3*4+4*5+...+99*100
=> 3A = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ...... + 98.99.100 - 99.100.101
=> 3A = 99.100.101
=> A = 99.100.101 / 3 = 333300
S = 1 x 2 + 2 x 3 + ... + 99 x 100
3S = 1 x 2 x 3 + 2 x 3 x (4 - 1) + ..... + 99 x 100 x (101 - 98)
3S = 1 x 2 x 3 + 2 x 3 x 4 - 1 x 2 x 3 + .... + 99 x 100 x 101 - 98 x 99 x 100
3S = 99 x 100 x 101 = 999900
S = 999900 : 3 = 333300
Tinh tong
1/ 1+(-2)+3+(-4)+...+19+(-20)
2/1-2+3-4+...+99-100
3/2-4+6-8+..+48-50
4/-1+3-5+7+...+97-99
5/1+2-3-4+...+97+98-99-100
1/
Đặt A = 1+(-2)+3+(-4)+...+19+(-20)
A = ( 1+3+5+... + 19 ) - ( 2+4+6+... + 20 )
Mỗi nhóm trên có số hạng là:
( 19-10):2+1 = 10 số hạng
A = ( 1+19 ).10:2 - ( 20+2).10:2
A = 100 - 110
A = -10
2/
1 - 2 + 3 - 4 + ... + 99 - 100
= ( 1 - 2 ) + ( 3 - 4 ) + ... + ( 99 - 100 )
= ( - 1 ) + ( - 1 ) + ... + ( - 1 )
Từ 1 → 100 có 100 số hạng mà chia 2 số 1 nhóm
⇒ Số nhóm là:
100 : 2 = 50
mà mỗi nhóm bằng - 1
⇒ Tổng = - 50.
3/
a, 2-4+6-8+...+48-50
= ( 2-4)+( 6-8)+...+( 48-50)
= -2-2-...-2
= ( -2). 12
= -24
4/
-1+2-5+7-..+97-99
=(-1-99)+(-3-97)+...+(-49-51)
=(-100)+(-100)+...+(-100)
Có 50 cặp -100
Nên Tổng bằng : -100.50=-5000
Vậy....=-5000
5/
1+2-3-4+.....+97+98-99-100
=1+(2-3-4)+5+.....+97+(98-99-100)
=1+0+0+0+......+0+(-101)
=1+(-101)
=-100
4.tinh tong
1/ 1+(-2)+3+(-4)+...+19+(-20)
2/ 1-2+3-4+...+99-100
3/ 2-4+6-8+...+48-50
4/ -1+3-5+7-...+97-99
5/1+2-3-4+...+97+98-99-100
Ta có : 1 + (-2) + 3 + (-4) + ...... + 19 + (-20)
= [1 + (-2)] + [3 + (-4)] + ...... + [19 + (-20)]
= -1 + -1 + -1 + ..... + -1
= -1.10
= -10
Tinh:
\(A=1+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\)
cac ban giai chi tiet ra nha
bài 1
A=1*2*3+2*3*4+3*4*5+...+99*100*101
B=1*3*5+3*5*7+...+95*97*99
C=2*4+4*6+..+98*100
D=1*2+3*4+5*6+...+99*100
E=1^2+2^2+3^2+...+100^2
G=1*3+2*4+3*5+4*6+...+99*101+100*102
H=1*2^2+2*3^2+3*4^2+...+99*100^2
I=1*2*3+3*4*5+5*6*7+7*8*9+...+98*99*100
K=1^2+3^2+5^2+...+99^2
A = 1*2*3 + 2*3*4 + 3*4*5 ... + 99*100*101
=> 4A = 1*2*3*4 + 2*3*4*4 + 3*4*5*4 + ... +99*100*101*4
=> 4A = 1*2*3*4 + 2*3*4*(5 - 1) + 3*4*5*( 6 - 2) + ... + 99*100*101*(102 - 98)
=> 4A = 1*2*3*4 + 2*3*4*5 - 1*2*3*4 + 3*4*5*6 - 2*3*4*5 + ... + 99*100*101*102 - 98*99*100*101
=> 4A = 99*100*101*102
=> 4A = 101989800
=> A = 25497450
cho bieu thuc a=-1/3+1/3^2-1/3^3+1/3^4-1/3^5+...+1/3^100 tinh gia tri cua bieu thuc b=4/a/+1/3^100
tinh: D= 1*2*3+2*3*4+3*4*5+...+98*99*100