TÌm các số x,y, biết
\(\frac{x-y}{3}=\frac{x+y}{13}=\frac{xy}{20}\)
Tìm các số x,y biết:
\(\frac{x-y}{3}=\frac{x+y}{13}=\frac{xy}{20}\)
Ta có :
x-y / 3 = x+y / 13
=> 13 (x - y) = 3 (x + y)
=> 13x - 13y = 3x + 3y
=> 13x - 13y - (3x + 3y) = 0
=> 13x - 13y - 3x - 3y = 0
=> 10x - 10y = 0
=> 10 (x - y) = 0
=> x - y = 0
=> x = y
Lại có:
x+y / 13 = 2x / 13 (vì x = y đã chứng minh ở câu trên).
=> 0 / 13 = 2x /13
=> 2x = 0
=> x = 0 (1)
Mà x = y (2)
Từ (1) và (2) suy ra:
y = 0.
Vậy x = 0; y = 0 hay x = y = 0.
Tìm các số x,y,z biết
\(\frac{x-y}{3}=\frac{x+y}{13}=\frac{xy}{20}\)
x-y/3 = x+y/13 = xy/20 = x-y+x+y/3+13 = x/8 =
x+y-x+y/13-3 = y/5
<=> x=0 ; y=0
hoặc xy/20 = x/8 <=> y/20 = 1/8 <=> y = 5/2
và x/8 = y/5 <=> x = 8y/5 = 8.5/2.5 = 4
vậy x=0 ; y=0 hoặc x=4 ; y=5/2
Áp dụng tc của dãy tỉ số bằng nhau ta có :
\(\frac{x-y}{3}=\frac{x+y}{13}=\frac{xy}{20}=\frac{\left(x-y\right)+\left(x+y\right)}{3+13}=\frac{\left(x+y\right)-\left(x-y\right)}{13-3}\)
\(\Rightarrow\frac{xy}{20}=\frac{2x}{16}=\frac{2y}{10}\)
\(\Rightarrow\frac{xy}{20}=\frac{x}{8}=\frac{y}{5}\)
\(\Rightarrow\frac{x^2y^2}{400}=\frac{x^2}{64}=\frac{y^2}{25}=\frac{xy}{40}\)
\(\Rightarrow\frac{\left(xy\right)^2}{400}=\frac{10xy}{400}\)
\(\Rightarrow x^2y^2=10xy\)
\(\Rightarrow xy=10\)
Giải ra ; thay vào là tìm đc cặp số x;y
Tìm số x,y, biết:
\(\frac{x-y}{3}=\frac{x+y}{13}=\frac{xy}{20}\)
Tìm các số x,y,biết :\(\frac{x-y}{3}=\frac{x+y}{13}=\frac{xy}{200}\)
Nguyễn Hải Đăng chắc bn giỏi nói ng ta ngu :((
\(\frac{x-y}{3}=\frac{x+y}{13}=\frac{x-y-x-y}{3-13}=\frac{-2y}{-10}=\frac{y}{5}\)
\(\Rightarrow\frac{y}{5}=\frac{xy}{200}\Rightarrow200y=5xy\Rightarrow\frac{200y}{5y}=x\Rightarrow x=40\)
\(\frac{x-y}{3}=\frac{y}{5}=\frac{40-y}{3}=\frac{y}{5}\Rightarrow5.\left(40-y\right)=3y\Rightarrow200-5y=3y\)
\(\Rightarrow200=8y\Rightarrow y=25\)
Vậy x=40, y=25
Tìm các số x, y biết:
\(\frac{x-y}{3}=\frac{x+y}{13}=\frac{xy}{200}.\)
Ta có: \(\frac{x-y}{3}=\frac{x+y}{13}=\frac{xy}{200}\left(1\right)\)
\(\Rightarrow\frac{x-y}{3}=\frac{x+y}{13}=\frac{xy}{200}=\frac{x-y+x+y}{3+13}=\frac{2x}{16}=\frac{x}{8}\left(2\right)\)
Từ (1) và (2) => \(\frac{x}{8}=\frac{xy}{200}\Rightarrow8xy=200x\)
\(\Leftrightarrow8xy-200x=0\)
\(\Leftrightarrow8x.\left(y-25\right)=0\)
\(\Rightarrow\orbr{\begin{cases}8x=0\\y-25=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\y=25\end{cases}}}\)
* Nếu x = 0 thì \(\frac{0-y}{3}=\frac{0+y}{13}=0\Rightarrow y=0\)
* Nếu y = 25 thì \(\frac{x-25}{3}=\frac{x+25}{13}\)
\(\Leftrightarrow13.\left(x-25\right)=3.\left(x+25\right)\)
\(\Leftrightarrow13x-325=3x+75\)
\(\Rightarrow13x-3x=75+325=400\)
\(\Rightarrow10x=400\)
\(\Rightarrow x=40\)
Vậy x =0 thì y =0
x =40 thì y = 25
Tìm các số x,y biết :
\(\frac{x-y}{3}=\frac{x+y}{13}=\frac{xy}{200}\)
Tìm các số x,y biết : \(\frac{x-y}{3}=\frac{x+y}{13}=\frac{xy}{200}\)
x = 40 ; y = 25
hoặc x = y = 0
Cần cách giải thì bào
a, Tìm x biết
\(\frac{x-y}{3}=\frac{x+y}{13}=\frac{xy}{200}\)
b, Tìm các số x,y,z
\(\frac{x}{10}=\frac{y}{5}:\frac{y}{2}=\frac{z}{3}\)và 2x-3y+4z=330
Tìm các số x, y biết rằng: \(\frac{x-y}{3}=\frac{x+y}{13}=\frac{x.y}{20}\)
\(\frac{x-y}{3}=\frac{x+y}{13}=\frac{xy}{20}=\frac{x-y+x+y}{3+13}=\frac{x}{8}=\frac{x+y-x+y}{13-3}=\frac{y}{5}\)
\(\Leftrightarrow x=0\Leftrightarrow y=0\)
hoặc\(\frac{xy}{20}=\frac{x}{8}\Leftrightarrow\frac{y}{20}=\frac{1}{8}\Leftrightarrow y=\frac{5}{2}\) ;và\(\frac{x}{8}=\frac{y}{5}\Leftrightarrow x=\frac{8y}{5}=\frac{8.5}{2.5}=4\)
Vậy x =0 ; y =0
hoặc x=4 ; y =5/2