Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cá Chinh Chẹppp
Xem chi tiết
Nguyễn Thị BÍch Hậu
3 tháng 7 2015 lúc 9:29

\(A=\frac{x-3+5}{\sqrt{x-3}}=\sqrt{x-3}+\frac{5}{\sqrt{x-3}}\ge2\sqrt{\frac{\left(\sqrt{x-3}\right).5}{\sqrt{x-3}}}=2\sqrt{5}\)

=> Min A=\(2\sqrt{5}\) <=> x=8 (t/m đk)

Tung Nguyễn
Xem chi tiết
Hoàng Lê Bảo Ngọc
9 tháng 8 2016 lúc 22:35

a) Điều kiện : x > 0

\(P=\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+1=\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+1\)

\(=x+\sqrt{x}-2\sqrt{x}-1+1=x-\sqrt{x}\)

b) Đặt \(y=\sqrt{x},y\ge0\)

\(\Rightarrow P=y^2-y=\left(y-\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)

Dấu "=" xảy ra khi và chỉ khi \(y=\frac{1}{2}\Rightarrow x=\frac{1}{4}\)

Vậy Min P = \(-\frac{1}{4}\) tại \(x=\frac{1}{4}\)

KIM TAE HYUNG
Xem chi tiết
Khánh Ngọc
21 tháng 9 2020 lúc 13:55

a. ĐKXĐ : \(\orbr{\begin{cases}x\ge0\\1-\sqrt{x}\ne0\end{cases}}\)<=> \(\orbr{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

b. \(P=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(\Leftrightarrow P=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(\Leftrightarrow P=\frac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(\Leftrightarrow P=\frac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(\Leftrightarrow P=\frac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(\Leftrightarrow P=\frac{\left(\sqrt{x}-1\right)\left(2-5\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(\Leftrightarrow P=\frac{2-5\sqrt{x}}{\sqrt{x}+3}\)

Khách vãng lai đã xóa
Tiêu Thanh Tuấn
21 tháng 9 2020 lúc 20:15

là bằng 2 phần 3 phải ko

Khách vãng lai đã xóa
Nguyễn Việt Hoàng
21 tháng 9 2020 lúc 20:30

a) ĐKXĐ : \(\hept{\begin{cases}x\ge0\\1-\sqrt{x}\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

b) \(P=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(P=\frac{15\sqrt{x}-11}{x+3\sqrt{x}-\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(P=\frac{15\sqrt{x}-11}{\sqrt{x}\left(\sqrt{x+3}\right)-\left(\sqrt{x}+3\right)}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(P=\frac{15\sqrt{x}-11+\left(\sqrt{x}+3\right)\left(2-3\sqrt{x}\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(P=\frac{15\sqrt{x}-11+2\sqrt{x}-3x+6-9\sqrt{x}-\left(2x-2\sqrt{x}+3\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(P=\frac{7\sqrt{x}-5x-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(P=\frac{2-5\sqrt{x}}{\sqrt{x}+3}\)

c) Ta có :

\(P=\frac{-5\sqrt{x}+2}{\sqrt{x}+3}\)

+)Với \(x\ge0,x\ne1\)ta có : \(\sqrt{x}+3\ge3\left(1\right)\)

+) \(5\sqrt{x}\ge0\Rightarrow-5\sqrt{x}\le0\Rightarrow-5\sqrt{x}+2\le2\left(2\right)\)

Từ ( 1 ) và ( 2 ) \(\Rightarrow P\le\frac{2}{3}\)

Vậy max \(P=\frac{2}{3}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

Khách vãng lai đã xóa
ễnnguy Hùng
Xem chi tiết
Dương Lam Hàng
23 tháng 7 2018 lúc 15:10

a) \(ĐKXĐ:x\ne4;x\ne9\)

b) \(A=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)

        \(=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)

         \(=\frac{2\sqrt{x}-9-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

          \(=\frac{2\sqrt{x}-9-x+9+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{-\sqrt{x}+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

           \(=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

c) Ta có: \(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\left(\sqrt{x}-3\right)+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)

\(\Rightarrow\sqrt{x}-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\) (ĐK: x thuộc Z)

\(\sqrt{x}-3\)1-12-24-4
\(\sqrt{x}\)42517-1
x2\(\sqrt{2}\)\(\sqrt{5}\)\(\sqrt{1}\)\(\sqrt{7}\)\(\varnothing\)

Vậy để A thuộc Z khi x = {2;\(\sqrt{2};\sqrt{5};\sqrt{1};\sqrt{7}\) }

Gumm
Xem chi tiết
Huyen Trang Luong
Xem chi tiết
Tiểu Ma Bạc Hà
8 tháng 6 2017 lúc 10:37

bạn đặt \(\sqrt{x}=a\) , a> 0 

Thay \(\sqrt{x}=a\)  vô  biểu thức => rút gọn ra => thay trở lại  

Huyen Trang Luong
8 tháng 6 2017 lúc 10:58

giải chi tiết giúp mình đc không ạ?

Phạm Nguyễn Hoàng Anh
Xem chi tiết
Tuấn Nguyễn
12 tháng 6 2019 lúc 15:00

b) \(M=\frac{2}{\sqrt{x}-3}\in Z\Leftrightarrow\sqrt{x}-3\) là ước của 2.

\(\Leftrightarrow\sqrt{x}-3\in\left\{\pm1,\pm2\right\}\Leftrightarrow\sqrt{x}\in\left\{1,2,3,4,5\right\}\)

\(\Leftrightarrow x\in\left\{1,4,16,25\right\}\)

Đối chiếu điều kiện ta có:

\(x\in\left\{1,16,25\right\}\)

Đào Thu Hoà
12 tháng 6 2019 lúc 20:07

Để M là số nguyên thì \(\frac{2}{\sqrt{x}-3}\in Z\)    Suy ra \(\frac{2}{\sqrt{x}-3}=k\left(k\in N\right)\)

\(\Rightarrow\sqrt{x}-3=\frac{2}{k}\Leftrightarrow\sqrt{x}=\frac{2}{k}+3.\)\(\Rightarrow x=\left(\frac{2}{k}+3\right)^2\left(k\ne0\right).\)

Mà \(\sqrt{x}\ge0\Rightarrow\frac{2}{k}+3\ge0\Leftrightarrow\frac{2+3k}{k}\ge0\Leftrightarrow\hept{\begin{cases}k>0\\k\le-\frac{2}{3}\end{cases}\Leftrightarrow k\ne0\left(do-k\in Z\right).}\)

Lại theo ĐKXĐ ta có \(\hept{\begin{cases}\sqrt{x}\ne2\\\sqrt{x}\ne3\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{2}{\sqrt{x}-3}\ne-2\\\frac{2}{\sqrt{x}-3}\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}k\ne-2\\k\ne0\end{cases}.}}\)

Kết hợp lại ta có \(k\in Z,k\ne-2,k\ne0\)

Vậy để M là số nguyên thì \(x=\left(\frac{2}{k}+3\right)^2\)với \(k\in Z,k\ne-2,k\ne0.\)

Có sai chỗ nào mong mọi người chỉ cho .Cảm ơn nhiều 

P/S: Hầu hết các câu trả lời đều là tìm x nguyên , nhưng đề bài là tìm x thôi ạ! 

Tuấn Nguyễn
12 tháng 6 2019 lúc 14:57

a) Điều kiện xác định \(\hept{\begin{cases}x\ge0\\\sqrt{x}-2\ne\\\sqrt{x}-3\ne0\end{cases}0}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne4\\x\ne9\end{cases}}\)

\(M=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{\sqrt{x}-3}\)

\(=\frac{2\sqrt{x}-9-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{2\sqrt{x}-9-x+9+x-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{2\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{2}{\sqrt{x}-3}\)

Nguyễn Thị Thúy Ngân
Xem chi tiết
Lê Nguyễn Trường Chinh
Xem chi tiết