Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Hương Giang
Xem chi tiết

\(S=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{100}\)

\(\Rightarrow2S=2+1+\frac{1}{2}+\frac{1}{2^2}...+\frac{1}{99}\)

\(2S-S=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}\right)\)

\(\Leftrightarrow2S-S=S=2-\frac{1}{2^{100}}=\frac{2^{101}}{2^{100}}-\frac{1}{2^{100}}=\frac{2^{101}-1}{2^{100}}\)

Khách vãng lai đã xóa
Tsukino Usagi
Xem chi tiết
VRCT_Sakura
25 tháng 5 2016 lúc 16:56

Mình mới học lớp 5

Nguyễn Trung Kiên
25 tháng 5 2016 lúc 20:41

mình ko trả lời được đâu nha!

Nguyễn Phi Cường
25 tháng 5 2016 lúc 20:55

đây có chắc là toán lớp 7 không đấy 

nếu có bài hình nào khó thì cho lên đấy nhé mình chuyên về toán lớp 7 hơn

pham thi phuong anh
Xem chi tiết
๖ACE✪Hoàngミ★Việtツ
5 tháng 8 2017 lúc 16:03

\(\frac{\frac{2}{3}+\frac{1}{4}-\frac{3}{5}}{\frac{2}{3}-\frac{1}{4}+\frac{3}{5}}=\frac{\frac{2}{3}+\frac{1}{4}-\frac{3}{5}}{\frac{2}{3}-\left(\frac{1}{4}-\frac{3}{5}\right)}=\frac{\frac{2}{3}-\frac{7}{20}}{\frac{2}{3}+\frac{7}{20}}=\frac{\frac{19}{60}}{\frac{61}{60}}=\frac{19}{60}\times\frac{60}{61}=\frac{19}{61}\)

~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~

 ~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~

phạm công minh
5 tháng 8 2017 lúc 16:04

ta thấy có thể giản ước 2/3 = 2/3 ,1/4=1/4,3/5=3/5

=> phép tính trên bằng 1

phuonganh do
Xem chi tiết
Arima Kousei
10 tháng 4 2018 lúc 18:31

Ta có :  \(\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};...;\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{100}\)

\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2}\left(đpcm\right)\)

Chúc bạn học tốt !!! 

Duong Thi Minh
Xem chi tiết
Tran Tu
2 tháng 4 2017 lúc 0:15

Ôi, trang wed không tự nhận diện được công thức latex. Mình đăng lại bài giải:

a) Ta có

\(4T=\frac{4}{1+\sqrt{5}}+\frac{4}{\sqrt{5}+\sqrt{9}}+...+\frac{4}{\sqrt{2013}+\sqrt{2017}}\)

\(=\frac{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}{\sqrt{5}+1}+...+\frac{\left(\sqrt{2017}+\sqrt{2013}\right)\left(\sqrt{2017}-\sqrt{2013}\right)}{\sqrt{2017}+\sqrt{2013}}\)

\(=\sqrt{5}-1+\sqrt{9}-\sqrt{5}+\sqrt{13}-\sqrt{9}+...+\sqrt{2017}-\sqrt{2013}\)

\(=\sqrt{2017}-1\)

\(\Rightarrow T=\frac{\sqrt{2017}-1}{4}\)

b) Ta có

\(\frac{1}{2\sqrt{1}+1\sqrt{2}}=\frac{2-1}{\sqrt{2}\sqrt{1}\left(\sqrt{2}+\sqrt{1}\right)}\)

\(=\frac{\left(\sqrt{2}-\sqrt{1}\right)\left(\sqrt{2}+\sqrt{1}\right)}{\sqrt{2}\sqrt{1}\left(\sqrt{2}+\sqrt{1}\right)}\)

\(=\frac{\sqrt{2}-\sqrt{1}}{\sqrt{2}\sqrt{1}}=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}\)

Tương tự ta có

\(\frac{1}{3\sqrt{2}+2\sqrt{3}}=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\)

......................

\(\frac{1}{100\sqrt{99}+99\sqrt{100}}=\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}\)

Suy ra

\(S=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}\)

\(=1-\frac{1}{10}=\frac{9}{10}\)

Tran Tu
1 tháng 4 2017 lúc 23:29

a)\[\begin{array}{l}
4T = \frac{4}{{1 + \sqrt 5 }} + \frac{4}{{\sqrt 5  + \sqrt 9 }} + ... + \frac{4}{{\sqrt {2013}  + \sqrt {2017} }}\\
 = \frac{{(\sqrt 5  + 1)(\sqrt 5  - 1)}}{{1 + \sqrt 5 }} + ... + \frac{{(\sqrt {2017}  + \sqrt {2013} )(\sqrt {2017}  - \sqrt {2013} )}}{{\sqrt {2013}  + \sqrt {2017} }}\\
 = \sqrt 5  - 1 + \sqrt 9  - \sqrt 5  + ... + \sqrt {2017}  - \sqrt {2013} \\
 = 1 + \sqrt 5  - \sqrt 5  + \sqrt 9  - \sqrt 9  + ... + \sqrt {2013}  - \sqrt {2013}  + \sqrt {2017} \\
 = 1 + \sqrt {2017} \\
 \Rightarrow T = \frac{{1 + \sqrt {2017} }}{4}
\end{array}\]

Duong Thi Minh
3 tháng 4 2017 lúc 16:28

Cảm ơn Tran Tu, kết bn đê

Quang Huy
Xem chi tiết
KWS
3 tháng 9 2018 lúc 10:00

\(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\)

\(>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)

\(=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)

\(\Rightarrow S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}>\frac{2}{5}\)

Quang Huy
3 tháng 9 2018 lúc 10:04

nhưng tại sao lại >1/2*3+1/3*4+1/4*5+...+1/9*10

Quang Huy
3 tháng 9 2018 lúc 10:05

bạn giúp mk nha

Trương Việt Hoàng
Xem chi tiết
alibaba nguyễn
19 tháng 9 2016 lúc 22:42

Thôi để t làm cho

Ta có \(100+\frac{99}{2}+\frac{98}{3}+...+\frac{1}{100}\)

\(100+\frac{101-2}{2}+\frac{101-3}{3}+...+\frac{101-100}{100}\)

= 100 - 99 + \(\frac{101}{2}+\frac{101}{3}+...+\frac{101}{100}\)

\(1+\frac{101}{2}+\frac{101}{3}+...+\frac{101}{100}\)

= 101(\(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}+\frac{1}{101}\))

Thế vào cái ban đầu được 99

alibaba nguyễn
19 tháng 9 2016 lúc 21:45

Đáp số là 99. Bài dài làm biếng làm

Trương Việt Hoàng
19 tháng 9 2016 lúc 22:03

ai chẳng biết kết quả là 99 đang nói cách làm

Nguyễn Thị Ngọc Huyền
Xem chi tiết
Trần Minh Hoàng
12 tháng 6 2018 lúc 9:48

2.

a) Ta có:

\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)

\(\Rightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)=\left(x+1\right)\left(\frac{1}{13}+\frac{1}{14}\right)\)

Vì \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\ne\frac{1}{13}+\frac{1}{14}\)nên \(x+1=0\Leftrightarrow x=-1\)

Vậy x = -1

b) Ta có:

\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)

\(\Rightarrow\frac{x+4}{2000}+1+\frac{x+3}{2001}+1=\frac{x+2}{2002}+1+\frac{x+1}{2003}+1\)

\(\Rightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)

\(\Rightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}\right)=\left(x+2004\right)\left(\frac{1}{2002}+\frac{1}{2003}\right)\)

Vì \(\frac{1}{2000}+\frac{1}{2001}\ne\frac{1}{2002}+\frac{1}{2003}\)nên \(x+2004=0\Leftrightarrow x=-2004\)

Vậy, x = -2004

Đỗ Thế Hưng
Xem chi tiết