Cho hình thang ABCD, phân giác góc A và D cắt nhau tại M.Phân giác góc ngoài của góc B và C giao nhau tại N.
A)Cm :MN song song AB
B) Tính MN .Biết AB=a,BC= b,CD=c
Cho hình thang ABCD có AB song song CD. AB=a;BC=b;CD=c,AD=d(d<c) tia phân giác trong của góc A và D cắt nhau tại M.Tia phân giác ngoài góc B và C cắt nhau ở N.
1)CM: MN song song AB
2)Tính MN theo AB;CD
Cho hình thang ABCD (AB song song CD) có AB=a ; BC=b ; CD=c ; DA=d (d<c) . Các tia phân giác trong góc A và góc D cắt nhau tại M,các tia phân giác của góc phân giác ngoài tại đỉnh B và C cắt nhau tại N.
a,CMR MN song song AB
b,Tính độ dài MN
a) Gọi E, F lần lượt là giao điểm của AM và CD, BN và CD
Ta có : AB//CD (gt) => E = A1 (so le trong)
Mà A1 =A2 (gt)
Nên A2 = E
Xét ΔADE cân tại D, có DM là p/giác nên DM đồng thời là trung tuyến
=>AM= EM
Chứng minh tương tự, ta được :
BN = FN
Xét hình thang ABEF có : AM=BN(cm trên)
BN=FN(cm trên)
Do đó MN là đường TB của HÌNH thang ABEF
=> MN= \(\frac{EF+AB}{2}\)
MN//AB//EF Vậy MN// CD(đpcm)
b)Do ED= AD; BC=FC
Mà ED + DC + CF = EF
Nên AD + DC + BC = EF
Lại có MN \(\frac{EF+AB}{2}\)(CM trên)
Suy ra MN= \(\frac{AD+DC+BC+AB}{2}\)\(=\frac{a+b+c+d}{2}\)
Cho hình thang ABCD (AB song song CD) có AB=a,BC=b,CD=c,DA=d. Các đường phân giác của các góc ngoài đỉnh A và D cắt nhau tại M, Các đường phân giác của các góc ngoài đỉnh B và C cắt nhau tại N
a, CMR: MN song song AB
b,Tính độ dài MN theo ABCD
a:
góc AMD=180 độ-góc MAD-góc MDA
\(=180^0-\dfrac{180^0-\widehat{BAD}}{2}-\dfrac{180^0-\widehat{ADC}}{2}\)
\(=180^0-\dfrac{1}{2}\widehat{ADC}-90^0+\dfrac{1}{2}\widehat{ADC}=90^0\)
Gọi giao của AM với DC là M'
Xét ΔDM'A có
DM là đường cao, là đường phân giác
nên ΔDM'A cân tại D
=>M là trung điểm của AM'
Gọi giao của BN với DC là N'
Ta có: \(\widehat{BNC}=180^0-\widehat{NBC}-\widehat{NCB}\)
\(=180^0-\dfrac{180^0-\widehat{ABC}}{2}-\dfrac{180^0-\widehat{BCD}}{2}\)
\(=180^0-90^0+\dfrac{1}{2}\widehat{ABC}-90^0+\dfrac{1}{2}\widehat{BCD}\)
=90 độ
Xét ΔCN'B có
CN vừa là đường cao, vừa là phân giác
nên ΔCN'B cân tại C
=>N là trug điểm của BN'
Xét hình thang ABN'M' có
M,N lần lượt là trung điểm của AM' và BN'
nen MN là đường trung bình
=>MN//CD//AB
b: MN=(AB+M'N')/2
=(AB+M'D+CD+CN')/2
mà M'D=AD và CN'=CB
nên MN=(AB+CD+AD+CB)/2
Cho hình thang ABCD (AB /CD). Các đường phân giác của các góc ngoài đỉnh A và D cắt nhau tại M, Các đường phân giác của các góc ngoài đỉnh B và C cắt nhau tại N
a, CMR: MN song song AB
b,Tính chu vi của hình thang ABCD biết MN=4cm
a) Gọi M và N lần lượt là giao điểm của AE, BF với CD.
Ta có: A D E ^ = 1 2 D ^ ngoài, D A E ^ = 1 2 A ^ ngoài.
Mà A ^ ngoài + D ^ ngoài = 1800 (do AB//CD)
⇒ A D E ^ + D A E ^ = 90 0 , tức là tam giác ADE vuông tại E.
Khi đó, tam giác ADM cân tại D (do có DE vừa là đường phân giác, vừa là đường cao) và E là trung điểm của AM.
Chứng minh tương tự, ta được F olaf trung điểm của BN.
Từ khó, suy ra EF là đường trung bình của hình thang ABNM và ta được ĐPCM
b) Từ ý a), EF = 1 2 ( A B + B C + C D + D A )
a:
góc AMD=180 độ-góc MAD-góc MDA
\(=180^0-\dfrac{180^0-\widehat{BAD}}{2}-\dfrac{180^0-\widehat{ADC}}{2}\)
\(=180^0-\dfrac{1}{2}\widehat{ADC}-90^0+\dfrac{1}{2}\widehat{ADC}=90^0\)
Gọi giao của AM với DC là M'
Xét ΔDM'A có
DM là đường cao, là đường phân giác
nên ΔDM'A cân tại D
=>M là trung điểm của AM'
Gọi giao của BN với DC là N'
Ta có: \(\widehat{BNC}=180^0-\widehat{NBC}-\widehat{NCB}\)
\(=180^0-\dfrac{180^0-\widehat{ABC}}{2}-\dfrac{180^0-\widehat{BCD}}{2}\)
\(=180^0-90^0+\dfrac{1}{2}\widehat{ABC}-90^0+\dfrac{1}{2}\widehat{BCD}\)
=90 độ
Xét ΔCN'B có
CN vừa là đường cao, vừa là phân giác
nên ΔCN'B cân tại C
=>N là trug điểm của BN'
Xét hình thang ABN'M' có
M,N lần lượt là trung điểm của AM' và BN'
nen MN là đường trung bình
=>MN//CD//AB
b: MN=(AB+M'N')/2
=(AB+M'D+CD+CN')/2
mà M'D=AD và CN'=CB
nên MN=(AB+CD+AD+CB)/2
=>CABCD=8cm
Cho hình thang ABCD (AB //CD). Các đường phân giác của các góc ngoài đỉnh A và D cắt nhau tại M, Các đường phân giác của các góc ngoài đỉnh B và C cắt nhau tại N. CMR: MN song song AB
góc AMD=180 độ-góc MAD-góc MDA
\(=180^0-\dfrac{180^0-\widehat{BAD}}{2}-\dfrac{180^0-\widehat{ADC}}{2}\)
\(=180^0-\dfrac{1}{2}\widehat{ADC}-90^0+\dfrac{1}{2}\widehat{ADC}=90^0\)
Gọi giao của AM với DC là M'
Xét ΔDM'A có
DM là đường cao, là đường phân giác
nên ΔDM'A cân tại D
=>M là trung điểm của AM'
Gọi giao của BN với DC là N'
Ta có: \(\widehat{BNC}=180^0-\widehat{NBC}-\widehat{NCB}\)
\(=180^0-\dfrac{180^0-\widehat{ABC}}{2}-\dfrac{180^0-\widehat{BCD}}{2}\)
\(=180^0-90^0+\dfrac{1}{2}\widehat{ABC}-90^0+\dfrac{1}{2}\widehat{BCD}\)
=90 độ
Xét ΔCN'B có
CN vừa là đường cao, vừa là phân giác
nên ΔCN'B cân tại C
=>N là trug điểm của BN'
Xét hình thang ABN'M' có
M,N lần lượt là trung điểm của AM' và BN'
nen MN là đường trung bình
=>MN//CD
Cho hình thang ABCD AB=a,BC=b,CD=c,DA =đ,các đường phân giác góc ngoài tại A và cắt D tại M,cac duong
phân giác góc ngoài tại Bva C cắt nhau tại H
a,chứng minh MN song song với CD
b, Tính MN theo a,b,c,d
cho hình thang abcd . ab=a , bc = b , cd = c , da = d (d<c). các tia phân giác trong của góc a và d cắt nhau tại m . các tia phân giác ngoài của góc b và c cắt nhau tại n . cm : mn // ab , tinh mn ?
Cho hình tháng ABCD (AB // CD). Các đường phân giác của các góc ngoài tại A và D cắt nhau ở M. Các đường phân giác của các góc ngoài tại B và C cắt nhau tại N.
a) Chứng minh: MN // CD
b) Tính chu vì hình thang ABCD, biết MN= 4 cm
Gọi trung điểm của AD là P
trung điểm của BC là Q
=>PQ là đường trung bình của hình thang ABCD
=>MN//DC
Lại có góc ngoài của góc A và D kề nhau
=> hai tia phân giác của góc này hợp với nhau 1 góc 90 độ => góc M =90 độ
Tương tự có góc N =90 độ
Xét tam giác AMD có góc M =90 độ
P là trung điểm của AD
=> MP=PA=> tam giác MPA cân ở P => Góc MAP = góc AMP => MP//AB
Tương tự có QN//AB
mà MN//AB =>M, P, Q, N thẳng hàng
=>mn//\ba. Mà BA//DC => MN//DC
Bạn cho mình hỏi, ở đoạn suy ra PQ là đường trung bình của hình thang ABCD, rồi suy ra MN //DC là sao? Nếu đã suy ra được rồi thì cần gì phải chứng minh đoạn dưới nữa. Ở phần đó, bạn có viết nhầm hay không? Bạn giải thích giúp mình với
Cho hình thanh ABCD tia phân giác góc A và D cắt nhau tại M. Tia phân giác góc C và D cắt nhau tại N. Chứng minh
a, MN song song CD
b, Tính các cạnh hình thang ABCD biết CD= 4cm
khó thế,ai mà giải được trừ người lớn đúng k?