Những câu hỏi liên quan
Giao Khánh Linh
Xem chi tiết
lili
11 tháng 11 2019 lúc 23:20

Ko khó nếu bạn bt BĐT này

Áp dụng BĐT mincopxki 

=> M >= căn [(x+y)^2+(1/x+1/y)^2]

=> M >= căn {4^2+[4/(x+y)]^2} áp dụng cauchy schwarz

=> M >= căn {16+1} do x+y=4

=> M >= căn 17

''='' xảy ra <=> x=y; x+y=4 

<=> x=y=2 và M min = căn 17.

Khách vãng lai đã xóa
Hoàng Lê Bảo Ngọc
Xem chi tiết
Mr Lazy
12 tháng 8 2016 lúc 15:58

Ta chứng minh \(P\ge2\Leftrightarrow x^2\sqrt{x}+y^2\sqrt{y}\ge2\sqrt{xy}\)

Thay \(2=x^2+y^2\) thì bđt trở thành \(x^2\sqrt{x}+y^2\sqrt{y}\ge\left(x^2+y^2\right)\sqrt{xy}\)

\(\Leftrightarrow x^2\sqrt{x}\left(1-\sqrt{y}\right)+y^2\sqrt{y}\left(1-\sqrt{x}\right)\ge0\)

+TH1: \(\sqrt{x}=1\Leftrightarrow x=1\Rightarrow y=1\) thì VT = 0, bđt thỏa mãn

+TH2: \(x>1\)

bđt \(\Leftrightarrow x^2\sqrt{x}\left(1-\sqrt{y}\right)\ge y^2\sqrt{y}\left(\sqrt{x}-1\right)\text{ (*)}\)

Từ \(x>1\), ta có: \(y=\sqrt{2-x^2}< 1\)

\(\Rightarrow x>y\Rightarrow x^2\sqrt{x}>y^2\sqrt{y}>0\text{ (1)}\)

Cần chứng minh \(1-\sqrt{y}\ge\sqrt{x}-1>0\text{ (2)}\) là bđt sẽ được chứng minh

(2) \(\Leftrightarrow\sqrt{x}+\sqrt{y}< 2\)

Thật vậy, ta có: \(x+y\le\sqrt{2\left(x^2+y^2\right)}=2\Rightarrow\sqrt{x}+\sqrt{y}\le\sqrt{2\left(x+y\right)}\le2\)

Từ (1) và (2) suy ra (*) đúng.

+TH3: chứng minh tương tự TH2, chỉ đảo lại y và x.

Vậy \(P\ge2\). Dấu bằng đạt được tại x = y = 1.

Đệ Ngô
Xem chi tiết
Nguyễn Minh Đăng
15 tháng 5 2021 lúc 14:57

Áp dụng bất đẳng thức Minkowski ta có:

\(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)

\(\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{9}{x+y+z}\right)^2}=\sqrt{\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}\)

\(=\sqrt{\left[\left(x+y+z\right)^2+\frac{1}{\left(x+y+z\right)^2}\right]+\frac{80}{\left(x+y+z\right)^2}}\)

\(\ge\sqrt{2\sqrt{\left(x+y+z\right)^2\cdot\frac{1}{\left(x+y+z\right)^2}}+\frac{80}{1}}=\sqrt{82}\)

Dấu "=" xảy ra khi: \(x=y=z=\frac{1}{3}\)

Khách vãng lai đã xóa
Nguyễn VIP 5 sao
19 tháng 5 2021 lúc 21:32

Áp dụng bất đẳng thức Minkowski ta có:

√x2+1x2 +√y2+1y2 +√z2+1z2 ≥√(x+y+z)2+(1x +1y +1z )2

≥√(x+y+z)2+(9x+y+z )2=√(x+y+z)2+81(x+y+z)2 

=√[(x+y+z)2+1(x+y+z)2 ]+80(x+y+z)2 

≥√2√(x+y+z)2·1(x+y+z)2 +801 =√82

Dấu "=" xảy ra khi: x=y=z=13 

Khách vãng lai đã xóa
Minh minh
Xem chi tiết
Phạm Mỹ Châu
23 tháng 4 2018 lúc 21:22

vì x+y=1\(\Rightarrow\sqrt{1-x}=\sqrt{x+y-x}=\sqrt{y}\)

\(\Rightarrow\frac{x+2y}{\sqrt{1-x}}=\frac{x+y+y}{\sqrt{y}}=\frac{y+1}{\sqrt{y}}=\frac{y+\frac{1}{2}}{\sqrt{y}}+\frac{1}{2\sqrt{y}}\)

ad cau-chy có \(y+\frac{1}{2}\ge2\sqrt{\frac{y}{2}}=\sqrt{2y}\)\(\Rightarrow\frac{x+2y}{\sqrt{1-x}}\ge\sqrt{2}+\frac{1}{2\sqrt{y}}\)

Tương tự .....\(\Rightarrow P\ge2\sqrt{2}+\frac{1}{2}\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)\)

cm \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\ge\frac{4}{\sqrt{x}+\sqrt{y}}\ge\frac{4}{\sqrt{2\left(x+y\right)}}=\frac{4}{\sqrt{2}}=2\sqrt{2}\)

\(\Rightarrow P\ge2\sqrt{2}+\frac{1}{2}.2\sqrt{2}=3\sqrt{2}\)

Dấu = xra khi x=y=1/2

k cho mk nha mn ^.^

Minh Khôi
Xem chi tiết
๖ۣۜLuyri Vũ๖ۣۜ
Xem chi tiết
Đặng Ngọc Quỳnh
18 tháng 10 2020 lúc 12:40

Vì xyz=1\(\Rightarrow x^2\left(y+z\right)\ge2x^2\sqrt{yz}=2x\sqrt{x}\)

Tương tự \(y^2\left(z+x\right)\ge2y\sqrt{y};z^2=\left(x+y\right)\ge2z\sqrt{z}\)

\(\Rightarrow P\ge\frac{2x\sqrt{x}}{y\sqrt{y}+2z\sqrt{z}}+\frac{2y\sqrt{y}}{z\sqrt{z}+2x\sqrt{x}}+\frac{2z\sqrt{z}}{x\sqrt{x}+2y\sqrt{y}}\)

Đặt \(x\sqrt{x}+2y\sqrt{y}=a;y\sqrt{y}+2z\sqrt{z}=b;z\sqrt{z}+2x\sqrt{x}=c\)

\(\Rightarrow x\sqrt{x}=\frac{4c+a-2b}{9};y\sqrt{y}=\frac{4a+b-2c}{9};z\sqrt{z}=\frac{4b+c-2a}{9}\)

\(\Rightarrow P\ge\frac{2}{9}\left(\frac{4c+a-2b}{b}+\frac{4a+b-2c}{a}+\frac{4b+c-2a}{b}\right)\)

\(=\frac{2}{9}\text{ }\left[4\left(\frac{c}{b}+\frac{a}{c}+\frac{b}{a}\right)+\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-6\right]\ge\frac{2}{9}\left(4.3+2-6\right)=2\)

Min P =2 khi và chỉ khi a=b=c khi va chỉ khi x=y=z=1

Khách vãng lai đã xóa
nguyen van bi
Xem chi tiết
Đặng Anh Tuấn
Xem chi tiết
phạm thanh nga
Xem chi tiết
coolkid
13 tháng 1 2020 lúc 23:30

\(\left(\frac{1}{x}+\frac{1}{y}\right)\sqrt{1+x^2y^2}\)

\(\ge\frac{2}{\sqrt{xy}}\sqrt{1+x^2y^2}=2\sqrt{\frac{1}{xy}+xy}=2\sqrt{\frac{1}{16xy}+xy+\frac{15}{16xy}}\)

\(\ge2\sqrt{2\sqrt{\frac{1}{16xy}\cdot xy}+\frac{15}{4\left(x+y\right)^2}}=2\sqrt{\frac{1}{2}+\frac{15}{4}}=\sqrt{17}\)

Dấu "=" xảy ra tai x=y=1/2

Khách vãng lai đã xóa