Cho ba số dương x,y,z thỏa mãn điều kiện xy+yz+xz=1
Tính giá trị của biểu thức A
A= x\(\sqrt{\frac{\left(1+y^2\right)\left(y^2+z^2\right)}{1+x^2}}+\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+x^2}}\)
Cho 3 số dương x,y,z thỏa mãn điều kiện xy+yz+xz=2010.CMR: giá trị của biểu thứ sau k phụ tuộc vào biến x;y;z
P=\(x\sqrt{\frac{\left(2010+y^2\right)\left(2010+z^2\right)}{2010+x^2}}\)+ \(y\sqrt{\frac{\left(2010+z^2\right)\left(2010+x^2\right)}{2010+y^2}}\)+\(z\sqrt{\frac{\left(2010+x^2\right)\left(2010+y^2\right)}{2010+z^2}}\)
cho 3 số dương x,y,z thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
cmr : \(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\)
a. giải phương trình sau : \(x+3+\sqrt{1-x^2}=3\sqrt{x+1}+\sqrt{1-x}\)
b. cho x,y,z là 3 số thỏa mãn : xyz=1 và \(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
tính giá trị của biểu thức : \(P=\left(x^{2015}-1\right)\left(y^{2016}-1\right)\left(z^{2017}-1\right)\)
a, cho 2 số dương x,y thỏa mãn x+y=1
tìm min của \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)
b, cho x,y,z là các số dương thỏa mãn : \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}=6\)
cmr : \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\le\frac{3}{2}\)
cho x,y,z dương thay đổi, thoả mãn xyz=1 . tìm max của S = \(\frac{\sqrt{x}}{1+x+xy}+\frac{\sqrt{y}}{1+y+yz}+\frac{\sqrt{z}}{1+z+zx}\)
Cho biểu thức
\(P=\left(\frac{1}{\sqrt{x}-1}+\frac{11}{x+\sqrt{x}+1}-\frac{34}{1-x\sqrt{x}}\right):\left(\frac{1}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\right)\)
a)Tìm điều kiện của x để P xác định, rút gọn P?
b) tính giá trị của P khi \(x=3-2\sqrt{2}\)
c)tìm giá trị nhỏ nhất của biểu thức P? Giá trị đó đạt được khi x bằng bao nhiêu?
giúp mk vs :)
cho x,y >0 thỏa mãn (x+y+1)2=xy
tìm Min P = \(\frac{1}{xy}\) + \(\frac{1}{x^2+y^2}\) +\(\frac{\sqrt{xy}}{x+y}\)
Cho 3 số dương x, y, z thoả mãn x + y + z = 1. Tìm giá trị nhỏ nhất của biểu thức sau:
\(B=\frac{3}{xy+yz+zx}+\frac{2}{x^2+y^2+z^2}\)