Cho tam giác ABC, 1 điểm M ký hiệu cạnh BC, Từ M kẻ các đường thẳng ME//AB, đường thẳng MD//AC ( D thuộc AC, E thuộc AB)
a) Chứng minh: góc BAC= góc BDM= góc EMD?
b) Chứng minh: góc A+ góc B+ góc C= 180 độ
MONG CÁC BẠN GIẢI GIÙM MÌNH...HUHU
Cho tam giác ABC, từ 1 điểm M bất kì nằm trên cạnh BC kẻ các đường thẳng MD song song AB,ME song song AC ( D thuộc AC, E thuộc AB)
a) So sánh góc BAC và góc EMD.
b) Chứng minh góc A + góc B + góc C = 180 độ
Cho tam giác ABC, từ 1 điểm M bất kì nằm trên cạnh BC kẻ các đường thẳng MD song song AB,ME song song AC ( D thuộc AC, E thuộc AB)
a) So sánh góc BAC và góc EMD.
b) Chứng minh góc A + góc B + góc C = 180 độ
Mik kovbieets ,bạn có thể vào phần câu hỏi tương tự
Cho tam giác ABC có AB = AC, M là trung điểm của BC. a) CMR tam giác AMB= tam giác AMC .b) Từ M kẻ ME vuông góc với AB(E thuộc AB), MF vuông góc với AC ( F thuộc AC ,2 đường thẳng này cat nhau tại N. Chứng minh AE=AF.c) chứng minh EF// BC. d) từ B kẻ đường thẳng vuông góc với AB , từ C kẻ đường thẳng vuông góc với AC, 2 đường thẳng này cắt nhau tại N. Chứng minh A; M;N thẳng hàng
Cho tam giác cân ABC có góc BAC = 120 độ. Vẽ đường cao AM (M thuộc BC)
a) Chứng minh rằng AM là tia phân giác của góc BAC
b) Kẻ MD vuông góc với AB ( D thuộc AB ), kẻ ME vuông góc vs AC ( E thuộc AC ) . Chứng minh tam giác ADE cân và DE // BC
c) Chứng minh rằng tam giác MDE đều
d) Đường vuông góc vs BC kẻ từ C cắt AB tại F . Tính độ dài cạnh AF biết CF = 6cm
Cho tam giác nhọn ABC có đường cao AH. Từ H kẻ HE vuông góc với AB, HF vuông góc với AC (E thuộc AB, F thuộc AC).
a) Chứng minh: góc AFE=góc ABC
b) Đường thẳng EF cắt BC tại M. Chứng minh: ME . MF = MB . MC.
c) Cho biết AC= 10 cm,góc BAC=60, góc ABC=80. Tính độ dài đoạn vuông góc hạ từ A
xuống EF.
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:
\(AE\cdot AB=AH^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:
\(AF\cdot AC=AH^2\)(2)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
hay \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
Xét ΔAEF và ΔACB có
\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)(cmt)
\(\widehat{EAF}\) chung
Do đó: ΔAEF\(\sim\)ΔACB(c-g-c)
Suy ra: \(\widehat{AFE}=\widehat{ABC}\)
Bài 1
a) Ta có tam giác ABC cân tại A
=> \(\widehat{ABC}=\widehat{ACB}=\dfrac{180^o-\widehat{BAC}}{2}\) (1)
Xét tam giác BDM và tam giác CEM có \(\widehat{BDM}=\widehat{CEM}=90^o\), BM=CM, \(\widehat{DBM}=\widehat{ECM}\left(cmt\right)\) => tam giác BDM = tam giác CEM (ch.gn)
b) tam giác BDM = tam giác CEM => DM = EM (2 cạnh tg ứng)
Xét tam giác ADM và AEM có
AM chung
\(\widehat{ADM}=\widehat{AEM}=90^o\)
DM = EM (cmt)
=> tam giác ADM = tam giác AEM (ch-cgv)
c) Tam giác BDM = CEM => BD = CE
Có AB = AC(gt) => AD + EB = AE + FC mà BD = CE => AD = AE => tam giác ADE cân tại A
=> \(\widehat{ADE}=\widehat{AED}=\dfrac{180^o-\widehat{DEA}}{2}\) (2)
Từ 1 + 2 => \(\widehat{ADE}=\widehat{ABC}\) mà 2 góc đồng vị => EF // AB
Bài 2 em xem lại đoạn trên AC lấy điểm D, đường phân giác của góc A cắt DC tại I nhé
Vẽ tam giác ABC lấy điểm M nằm giữa B va C.Từ M kẻ MD//AB(D thuộc AC),kẻ ME//AC(E thuộc AB)
a,hãy kể tên 2 cặp góc đồng vị,2 cặp góc so le trong
b,chứng minh góc BAC =góc EMD
(nhớ vẽ hình)
Cho tam giác ABC cân tại A, trên cạnh BC lấy điểm D và E sao cho BD=CE(D nằm giữa B và E)
a)Chứng minh tam giác ABD bằng tam giác ACE
b)Kẻ DM vuông góc với AB(M thuộc AB) và EN vuông góc với AC(N thuộc AC). CHứng minh AM=AN
c) Gọi K là giao điểm của đường thẳng DM và đường thẳng EN và góc BAC = 120 độ, chứng minh rằng tam giác DKE là tam giác đều
Câu a (1,0đ) Chứng minh :ABD = ACE
Xét ABD và ACE :có AB=AC (cạnh bên cân); =(góc đáycân);BD=CE (gt) (0,25đ) x3=(0,75đ)
Vậy ABD = ACE(cgc) (0,25đ)
Câu b (0,75đ) Chứng minh đúng vuông AMD = vuông ANE vì có AD = AE;
(do ABD =ACE) (0,5đ)
Kết luận AMD = ANE và suy ra AM =AN) (0,25đ)
Câu c (0,75đ): Chứng minh đúng vuông BMD = vuông CNE (cạnh huyền - góc nhọn )(0,25đ)
Lập luận chứng minh được rồi suy ra KDE cân tại K (1)(0,25đ)
Từ lập luận để (2)
Kết hợp (1)và (2) KDE đều )(0,25đ)
https://olm.vn/hoi-dap/question/1231127.html
Cho tam giác ABC cân tại A, trên cạnh BC lấy điểm D và E sao cho BD=CE(D nằm giữa B và E) a)Chứng minh tam giác ABD bằng tam giác ACE b)Kẻ DM vuông góc với AB(M thuộc AB) và EN vuông góc với AC(N thuộc AC). CHứng minh AM=AN c) Gọi K là giao điểm của đường thẳng DM và đường thẳng EN và góc BAC = 120 độ, chứng minh rằng tam giác DKE là tam giác đều
a) Xét tam giác ABD và tam giác ACE có:
AB = AC (Vì tam giác ABC cân tại A)
\(\widehat{ABC}=\widehat{ACB}\)(vì tam giác ABC cân tại A)
BD = CE (gt)
Do đó tam giác ABD = tam giác ACE(cgc)
b) Ta có: tam giác ABD = tam giác ACE (cmt)
\(\Rightarrow\)AD = AE (hai cạnh tương ứng) (1)
\(\Rightarrow\widehat{BAD}=\widehat{CAE}\)(hai góc tương ứng) (2)
Từ (1) và (2) \(\Rightarrow\) tam giác vuông AMD = tam giác vuông ANE (ch-gn)
\(\Rightarrow\)AM = AN (hai cạnh tương ứng)
c) Trong tam giác ABC có góc BAC=120 độ
\(\Rightarrow\)Góc ABC = góc ACB = \(\frac{180-120}{2}\)= 30 độ
Trong tam giác vuông BMD có góc MBD = 30 độ \(\Rightarrow\widehat{MDB}=60\)độ
Tương tự: Ta được, trong tam giác vuông NCE có góc NEC =60 độ
\(\Rightarrow\)\(\widehat{MDB}=\widehat{NEC}\)(=60 độ)
Mặt khác: \(\widehat{MDB}=\widehat{EDK}\left(đđ\right)\)
\(\widehat{NEC}=\widehat{DEK}\left(đđ\right)\)
\(\Rightarrow\widehat{EDK}=\widehat{DEK}\)(=60 độ)
\(\Rightarrow\widehat{DKE}=180-\left(60\times2\right)=60\)độ
\(\Rightarrow\)Trong tam giác DKE có 3 góc EDK;DEK;DKE cùng bằng 60
Hay tam giác DKE đều.
a) Xét hai tam giác ABD và ACE ta có
AB = AC (gt)
\(\widehat{ABD}=\widehat{ACE}\left(gt\right)\)
BD = CE (gt)
Do đó: \(\Delta ABD=\Delta ACE\left(c-g-c\right)\)
b) Ta có: \(\Delta ABD=\Delta ACE\)(câu a)
\(=>\hept{\begin{cases}\widehat{BAD}=\widehat{EAC}\\AD=AE\end{cases}}\)(cặp góc và cặp cạnh tương ứng)
Xét hai tam giác vuông AMD và ANE ta có
AD = AE (cmt)
\(\widehat{MAD}=\widehat{EAN}\left(cmt\right)\)
Do đó: \(\Delta AMD=\Delta ANE\left(c.h-g.n\right)\)
=> AM =AN (cặp cạnh tương ứng)
c) Trong \(\Delta ABC\)cân tại A ta có: \(\widehat{ABC}=\widehat{ACB}=\frac{180^o-\widehat{BAC}}{2}=\frac{180^o-120^0}{2}=30^o\)
Trong \(\Delta MDB\)vuông tại M ta có: \(\widehat{BDM}=90^o-\widehat{DBM}=90^o-30^o=60^o\)
Ta lại có: \(\widehat{ABC}=\widehat{ACB}\left(gt\right)\)
=> \(\widehat{MDB}=\widehat{NEC}\)(vì cùng bù với \(\widehat{ABC}\))
mà \(\hept{\begin{cases}\widehat{BDM}=\widehat{KDE}\left(đđ\right)\\\widehat{NEC}=\widehat{DEK}\left(đđ\right)\end{cases}}\)
=> \(\widehat{KDE}=\widehat{KED}=60^o\)(1)
Trong \(\Delta DKE\)có: \(\widehat{KDE}+\widehat{KED}+\widehat{DKE}=180^o\)
hay \(60^o+60^o+\widehat{DKE}=180^o\)
\(120^o+\widehat{DKE}=180^o\)
\(\widehat{DKE}=180^o-120^o\)
\(\widehat{DKE}=60^o\)(2)
Từ (1) và (2) => \(\Delta DKE\)là tam giác đều
P/s: k hộ thần :3