\(\frac{3x-y}{x+y}\)=\(\frac{3}{4}\).tim gia tri cua ti so \(\frac{x}{y}\)
CHO TY LE THUC
\(\frac{3x-y}{x+y}=\frac{3}{4}\)tim gia tri cua ti so \(\frac{x}{y}\)
\(\Rightarrow4\left(3x-y\right)=3\left(x+y\right)\)
\(\Rightarrow12x-4y=3x+3y\)
\(\Rightarrow3x+9x-4y=3x+3y\)
\(\Rightarrow9x-4y=3y\)
\(\Rightarrow9x=3y+4y=7y\)
\(\Rightarrow\frac{x}{y}=\frac{7}{9}\)
Theo đề bài, ta có:
\(\frac{3x-y}{x+y}=\frac{3}{4}\Rightarrow4.\left(3x-y\right)=3.\left(x+y\right)\)
\(12x-4y=3x+3y\)
\(12x-3x=3y+4y\)
\(9x=7y\)
\(\Rightarrow\frac{x}{y}=\frac{7}{9}\)
c1: Tap hop cac gia tri nguyen cua x thoa man \(\left(x+\frac{5}{4}\right)\left(x-\frac{19}{7}\right)\)<0
c2: Neu x,y la cac so nguyen thoa man 2xy+4y=6 thi y co the nhan nhung gia tri nam trong tap hop nao
c3: tim 3 so x,y,z biet x+y=8,x+z=10,y+z=12
C4: Gia tri cua x thoa man (x+3)^2=25 va x^3>0 la x=
Câu 1:
x + 5/4 = 0 => x = -5/4
x - 19/7 = 0 => x = 19/7
Lập bảng:
P/s: Edogawa Conan: Cái bảng của bạn cho mình cop nha! Thanks! Tí mik trả bạn 1 ! OK?
x | -5/4 19/7 |
x + 5/4 | - 0 + / + |
x - 19/7 | - / - 0 + |
( x + 5/4 ) ( x - 19/7 ) | + 0 - 0 + |
Suy ra -5/4 < x < 19/7
Hay -1,25 < x < 2,(714285)
Mặt khác x thuộc Z nên x = -1, 0, 1, 2
Câu 2:
2xy + 4y = 6
2 (xy + 2y) = 6
=> xy + 2y = 6 / 2 = 3
=> xy + 2y = 3
=> y (x + 2) = 3
Từ đó lập bảng phân tích 3 = 1 . 3 = (-1) . (-3)
Mik khỏi lập bảng!
Từ bảng trên ta có y = {-3; -1; 1; 3}
Câu 3:
x + y = 8, x + z = 10, y + z = 12
=> (x + y) + (x + z) + (y + z) = 8 + 10 + 12 = 30
=> 2(x + y + z) = 30
=> x + y + z = 15
Đến đây thì dễ rồi! ^^
Câu 4:
(x + 3) = +5 Hoặc -5
Nhưng đề hỏi là x^3 > 0 = .....
Nên ta chọn (x + 3) = 5 (tại nếu chọn x + 3 = -5 thì x sẽ < 0 dẫn đến x^3 < 0
Ta có x + 3 = 5
Từ đó có x = 8
Đến đây thì dễ dàng tính ra x^3 bằng mấy và thỏa mãn x > 0....
* ♥ * Xong! * ♫ *
* ♥ * nha! * ♫ *
C1: Lập bảng xét dấu tích:
x + 5/4 = 0 => x = -5/4
x - 19/7 = 0 => x = 19/7
Ta có:
x | -5/4 19/7 |
x + 5/4 | - 0 + / + |
x - 19/7 | - / - 0 + |
( x + 5/4 ) ( x - 19/7 ) | + 0 - 0 + |
Vậy -5/4 < x < 19/7
C3: (x+y)+(x+z)+(y+z)=8+10+12
=> 2(x+y+z)=30
=> x+y+z=15
=> x=15-12=3
y=15-10=5
z=15-8=7
cau 1: tinh gia tri cua x thoa man
\(\left(x-3\right)\left(x^2+3x+9\right)+x\left(x+2\sqrt{2}\right)\left(2\sqrt{2}-x\right)=-3\)
cau 2.tinh GTLN cua bieu thuc
\(2x-2x^2+13\)
cau 3. tinh gia tri cua bieu thuc
\(\frac{3^{\left(x+y\right)^2}}{3^{\left(x-y\right)^2}}\)voi xy=\(\frac{1}{2}\)
cau 4. tim GTLN cua
\(-3x^2-6x-4\)
cau 5. cho ham so : f(x)=\(\frac{1}{5x+9}\)
tinh gia tri cua \(f\left(\frac{40}{25}\right)\)
cau 6. cho hinh thang can ABCD . Day nho AB,goc D bang 64 do. tinh so do goc ngoai tai A
cho hai so duong xy thoa man \(\frac{4}{x^2}+\frac{5}{y^2}\ge9\) tim gia tri nho nhat cua bieu thuc\(Q=2x^2+\frac{6}{x^2}+3y^2+\frac{8}{y^2}\)
\(Q=2x^2+\frac{2}{x^2}+3y^2+\frac{3}{y^2}+\frac{4}{x^2}+\frac{5}{y^2}\)
Áp dụng cô si ,ta có
\(2x^2+\frac{2}{x^2}\ge2\sqrt{2x^2\cdot\frac{2}{x^2}}=4\)
\(3y^2+\frac{3}{y^2}\ge2\sqrt{3y^2\cdot\frac{3}{y^2}}=6\)
\(\Rightarrow Q\ge4+6+9=19\)
Dấu "=" xảy ra khi x=y=1
Cho x,y la cac so thuc duong. Tim gia tri nho nhat cua bieu thuc:
\(P=\frac{xy}{x^2+y^2}+\left(\frac{1}{x}+\frac{1}{y}\right)\sqrt{2\left(x^2+y^2\right)}\)
Hình như đề sai rùi bạn ơi !
Phải sửa xy/x^2+y^2 thành x^2+y^2/xy hoặc cái gì khác
Vì xy/x^2+y^2 chỉ có GTLN chứ ko có GTNN đâu
Mk nói có gì sai thì thông cảm nha !
đề không sai đâu bạn à. Đây là đề toán chuyên ở tỉnh mình mà
Theo B.C.S ta có \(\sqrt{2\left(x^2+y^2\right)}\)\(\ge\)(\(\sqrt{\left(x+y\right)^2}\)\(=x+y\)
\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}\right)\sqrt{2\left(x^2+y^2\right)}\ge\left(\frac{1}{x}+\frac{1}{y}\right)\left(x+y\right)=2+\frac{x^2+y^2}{xy}\)
\(\Leftrightarrow\)\(P\ge2+\frac{xy}{x^2+y^2}+\frac{x^2+y^2}{4xy}+\frac{3\left(x^2+y^2\right)}{4xy}\)
\(\Leftrightarrow\)\(P\ge2+2\sqrt{\frac{xy}{x^2+y^2}\times\frac{x^2+y^2}{4xy}}\)\(+\frac{3\times2xy}{4xy}\)
\(\Leftrightarrow\)\(P\ge2+1+\frac{3}{2}=\frac{9}{2}\)
Dấu bằng xảy ra \(\Leftrightarrow\)x=y
tim gia tri nho nhat cua
\(\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)+\frac{1}{4}\left(x^{16}+y^{16}\right)-\left(1+x^2y^2\right)^2\)
\(A=\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}+\right)+\frac{1}{4}\left(x^{16}+y^{16}\right)-x^4y^4-2x^2y^2-1\)
Áp dụng Côsi
\(\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)\ge\frac{1}{2}.2\sqrt{\frac{x^{10}}{y^2}.\frac{y^{10}}{x^2}}=x^4y^4\)
\(\frac{1}{4}\left(x^{16}+y^{16}+1+1+1+1+1+1\right)\ge\frac{1}{4}.8\sqrt[8]{x^{16}y^{16}}=2x^2y^2\)
\(\Rightarrow A+\frac{6}{4}\ge x^4y^4+2x^2y^2-x^4y^4-2x^2y^2-1=-1\)
\(\Rightarrow A\ge-1-\frac{6}{4}=-\frac{5}{2}\)
Dấu "=" xảy ra khi và chỉ khi \(x^2=y^2=1\)
Vậy GTNN của A là -2,5 khi x2 = y2 = 1
Cho \(M=\frac{x+2y-3z}{x-2y+3z}..\)Tinh gia tri cua M biet cac so x, y, z ti le voi 5, 4, 3
cho x,y la cac so duong thay doi va thoa man dieu kien x+y\(\le\)1. tim gia tri nho nhat cua bieu thuc M=\(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\)
Ta có: \(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\)
\(=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)\(\ge4+2+1=7\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
Vậy \(\left(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\right)_{Min}=7\Leftrightarrow x=y=\frac{1}{2}\)
à nhầm, bạn pham trung thanh làm đúng rồi đấy mọi người ủng hộ bạn ấy nha
tim gia tri nho nhat cua bieu thuc \(A=\left|1-2x\right|-2009\)
tim 2 so x,y biet \(\frac{x}{y}=\frac{2}{5}\)va x+y=-21
so sanh \(2^{225}vs3^{150}\)
1)
vì | 1 - 2x | \(\ge\)0 \(\Rightarrow\)| 1 - 2x | - 2009 \(\ge\)-2009
\(\Rightarrow\)GTNN của A là -2009 khi | 1 - 2x | = 0 hay x = \(\frac{1}{2}\)
2)
\(\frac{x}{y}=\frac{2}{5}\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{-21}{7}=-3\)
\(\Rightarrow x=\left(-3\right).2=-6;y=\left(-3\right).5=-15\)
3)
2225 = ( 23 )75 = 875
3150 = ( 32 )75 = 975
vì 875 < 975 nên 2225 < 3150