CM vs mọi số nguyên a ta đều có : a^3 +5a là số nguyên chia hết cho 6
CM với mọi số nguyên a ta đều có : a^3+5a là số nguyên chia hết cho 6
Ta có : a^3 + 5a = a^3 - a + 6a
= a(a^2-1^2) + 6a
=a(a-1)(a+1) + 6a
Bạn lần lượt chứng minh a(a-1)(a+1) chia hết cho cả 2 và 3 theo cách gọi a có dạng 2k và 3k , rồi suy ra a (a-1)(a+1) chia hết cho 2.3 = 6 ( vì ( 2;3 ) =1)
mà 6a chia hết cho 6
Do đó , a(a-1)(a+1) + 6a hay a^3 + 5a chia hết cho 6 .
bài 5 : Cho : A=n^6=10n^4+n^3+98n-6n^5-26 và B=1-n+n^3 . CMr với n nguyên thì thương của phép chia A cho B là bội của 6
bài 6 : CM với mọi số nguyên a ta đếu có : a^3+5a là số nguyên chia hết cho 6
cho a,b là các số nguyên và 5a +8b chia hết cho 3.Chứng tỏ rằng với mọi số nguyên a,b ta có
a) -a +2b chia hết cho 3
b) 10a +b chia hết cho -3
c)16b +a chia hết cho 3
các bạn ơi xin hãy giúp mình
x(y+3)-y=-2
2x+xy -3y =18
(x^2 -5 ) . (x^2-25 ) là số nguyên âm
/7/+3^2 - (-2)^3
-7.18.9+43.63+(-21).375
15 -(-15+34)
chứng tỏ rằng 3a +12b chia hết cho 3.với mọi số nguyên a,b
chứng tỏ biết 5a+5b chia hết cho 3.chứng tỏ rằng với mọi số nguyên a,b ta có 5a+2b chia hết cho -3
Bài 1)a)Chứng minh rằng: với mọi số nguyên n ta luôn có: \(\left(n^3-n\right)\)chia hết cho 6
b)Với mọi số nguyên n ta luôn có \(\left(n^5-n\right)\)chia hết cho 30
c)cho a,b,c là các số nguyên. CMR \(\left(a^3+b^3+c^3\right)\)chia hết cho 6 <=> (a+b+c) chia hết cho 6
giải câu c nha
xét hiệu:A= \(a^3+b^3+c^3-a-b-c=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)
Ta có:a3-a=a(a2-1)=a(a-1)(a+1) chia hết cho 6
tương tự :b3-b chia hết cho 6 và c3-c chia hết cho 6
\(\Rightarrow\)A chia hết cho 6
=> a3+b3+c3 -a-b-c chia hết cho 6
mà a3+b3+c3chia hết cho 6 nên a+b+c chia hết cho 6
k cho tớ xog tớ giải hai câu còn lại cho nha
a/ n3 - n = n(n+1)(n-1) đây là ba số nguyên liên tiếp nên chia hết cho 6
CM:
Với mọi a nguyên thì : a^3 + 5a chia hết cho 6
a^3 = 3^3
5a = 5 . 3
ta có : 9 + 15 = 24
vậy 24 chia hết cho 6
A=a3+5a=(a3-a)+6a=a(a-1)(a+1)+6a
Vì a(a-1)(a+1) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6 và 6a chia hết cho 6
=> A chia hết cho 6.
1/ CM: Tỏng các Lập phương của ba số nguyên chia hết cho 6 chỉ khi tổng 3 số đó chia hết cho 6
2/ Cho 2 số lẽ có hiệu các lập phương chia hết cho 8 chứng minh hiệu hai số đó cũng chia hét cho 8
3/CM : Nếu bình phương thiếu của tổng hai số nguyên chia hết cho9 thì ttichs hai số đó cũng chia hết cho 9
4/ CM tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 9
5/CM n^5-5n^3+4n chia hết cho 120 vơi mọi số nguyên n
6/CM n^3+3n^2+n+3 chia hết cho 48 vơi mọi số lẻ n
7/ CM n^4+4n^3-4n^2+16n chia hết chi 384 với mọi số nguyên n
8/CMR với mọi số nguyên n thì n^2+11n+39 không chia hết chi 49
9/ CM lấy tich của 3 số nguyên liên tiếp +1 , được một số chính phương
10/CMR với mọi số tự nhiên n>1:
a/ số n^4 +4 là hợp số
b/ số n^4+4k^4 là hợp số (k là số tự nhiên)
11/ Tính giá trị của biểu thức (1+ab-b^4)(a^4+1) với a=2^7, b=5
12/ Số 2^32+1 có là số nguyên tố không?
13/ CMR Số 11....1-22...2 là một số chính phương(có 2n số 1 và n số 2)
14/ CMR số 111....12...2 (có n số 1 và n số 2) là tích hai số nguyên liên tiếp với mọi số nguyên dương n
15/ Tìm số có 3 chữ số sao cho chia nó cho 11 được thương bằng tổng các chữ số bị chia
sao dài dòng quá vậy, như thế thì ai mà làm nổi, bạn phải hỏi từng bài 1 chứ
Nhìn là muốn chạy rùi
^-^
p thử lên mạng mà tra từng câu 1 mik nghĩ là có
1/ CM: Tỏng các Lập phương của ba số nguyên chia hết cho 6 chỉ khi tổng 3 số đó chia hết cho 6
2/ Cho 2 số lẽ có hiệu các lập phương chia hết cho 8 chứng minh hiệu hai số đó cũng chia hét cho 8
3/CM : Nếu bình phương thiếu của tổng hai số nguyên chia hết cho9 thì ttichs hai số đó cũng chia hết cho 9
4/ CM tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 9
5/CM n^5-5n^3+4n chia hết cho 120 vơi mọi số nguyên n
6/CM n^3+3n^2+n+3 chia hết cho 48 vơi mọi số lẻ n
7/ CM n^4+4n^3-4n^2+16n chia hết chi 384 với mọi số nguyên n
8/CMR với mọi số nguyên n thì n^2+11n+39 không chia hết chi 49
9/ CM lấy tich của 3 số nguyên liên tiếp +1 , được một số chính phương
10/CMR với mọi số tự nhiên n>1:
a/ số n^4 +4 là hợp số
b/ số n^4+4k^4 là hợp số (k là số tự nhiên)
11/ Tính giá trị của biểu thức (1+ab-b^4)(a^4+1) với a=2^7, b=5
12/ Số 2^32+1 có là số nguyên tố không?
13/ CMR Số 11....1-22...2 là một số chính phương(có 2n số 1 và n số 2)
14/ CMR số 111....12...2 (có n số 1 và n số 2) là tích hai số nguyên liên tiếp với mọi số nguyên dương n
15/ Tìm số có 3 chữ số sao cho chia nó cho 11 được thương bằng tổng các chữ số bị chia
Làm 1;2;3;4 bài 1 lần thôi chứ sao 15 bài 1 lúc ?
Nghĩ ai rảnh mà giải ah ?
Cm : với mọi số nguyên n , ta đều có :
( 4n + 3 )^2 - 25 chia hết cho 8
Ta có :
\(A=\left(4n+3\right)^2-25\)
\(=\left(4n+3\right)^2-5^2\)
\(=\left(4n+3+5\right)\left(4n+3-5\right)\)
\(=\left(4n+8\right)\left(4n-2\right)\)
\(=\left[4\left(n+2\right)\right]\left[2\left(2n-1\right)\right]\)
\(=8\left(n+2\right)\left(2n-1\right)\)chia hết cho 8.
Vậy ...