Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Minh Hằng
Xem chi tiết
Bich Ha
21 tháng 3 2023 lúc 22:29

a)  (x+1) +(x+2) +...+(x+100) = 5750

100.x + (1+2+...+100) =5750

100.x + (100.101):2 = 5750

100.x + 5050 = 5750

100x= 700

x= 7

inuyasha
Xem chi tiết
»βέ•Ҫɦαηɦ«
11 tháng 7 2017 lúc 16:02

Ta có : \(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).......\left(1-\frac{1}{100}\right)\)

\(=\frac{1}{2}\frac{2}{3}.\frac{3}{4}.......\frac{99}{100}\)

\(=\frac{1}{100}\)

Nguyễn bảo hân
Xem chi tiết
luu anh phuong
Xem chi tiết
luu anh phuong
26 tháng 7 2015 lúc 20:06

dai gia dinh online math oi, giup minh di cac ban

 

 

Nhi Nguyen
Xem chi tiết
Rule jame
Xem chi tiết
Nguyễn Tấn Phát
1 tháng 6 2019 lúc 9:10

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)

\(A=1-\frac{1}{2020}\)

\(A=\frac{2019}{2020}\)

Nguyễn Tấn Phát
1 tháng 6 2019 lúc 9:14

\(B=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2017.2019}\)

\(2B=\frac{2}{1.3}+\frac{2}{3.5}=\frac{2}{5.7}+...+\frac{2}{2017.2019}\)

\(2B=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}=\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\)

\(2B=1-\frac{1}{2019}\)

\(2B=\frac{2018}{2019}\)

\(B=\frac{2018}{2019}:2=\frac{1009}{2019}\)

Nguyễn Tấn Phát
1 tháng 6 2019 lúc 9:16

\(C=3^0+3^1+3^2+...+3^{100}\)

\(3C=3^1+3^2+3^3+...+3^{101}\)

\(3C-C=\left(3^1+3^2+3^3+...+3^{101}\right)-\left(1+3^1+3^2+...+3^{100}\right)\)

\(2C=3^{101}-1\)

\(C=\frac{3^{101}-1}{2}\)

Nguyễn Quý Trung
Xem chi tiết
Phạm Thị Bích Ngọc
Xem chi tiết
ST
18 tháng 5 2017 lúc 21:09

Bài 3:

a,Đặt A = \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)

A = \(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\)

2A = \(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\)

2A + A = \(\left(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\right)+\left(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\right)\)

3A = \(1-\frac{1}{2^6}\)

=> 3A < 1 

=> A < \(\frac{1}{3}\)(đpcm)

b, Đặt A = \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)

3A = \(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)

3A + A = \(\left(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\right)-\left(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\right)\)

4A = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

=> 4A < \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)       (1)

Đặt B = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)

3B = \(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\)

3B + B = \(\left(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\right)+\left(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\right)\)

4B = \(3-\frac{1}{3^{99}}\)

=> 4B < 3

=> B < \(\frac{3}{4}\)   (2)

Từ (1) và (2) suy ra 4A < B < \(\frac{3}{4}\)=> A < \(\frac{3}{16}\)(đpcm)

ST
18 tháng 5 2017 lúc 21:25

bài 1:

5n+7 chia hết cho 3n+2

=> [3(5n+7) - 5(3n + 2)] chia hết cho 3n+2

=> (15n + 21 - 15n - 10) chia hết cho 3n+2

=> 11 chia hết cho 3n + 2

=> 3n + 2 thuộc Ư(11) = {1;-1;11;-11}

Ta có bảng:

3n + 21-111-11
n-1/3 (loại)-1 (chọn)3 (chọn)-13/3 (loại)

Vậy n = {-1;3}

ST
18 tháng 5 2017 lúc 21:35

Bài 2:

1, chữ số tận cùng

a, Xét 71999

Ta có: 71999 = 71996.73 = (74)499.343 = (...1)499.343 = (....1).343 = ....3 (1)

Vậy số 571999 có tận cùng là 3

b, Xét 31999

Ta có: 31999 = 31996.33 = (34)499.27 = (...1)499.27 = (...1) . 27 = ....7  (2)

Vậy số 931999 có chữ số tận cùng là 7

2, 

Từ (1) và (2) suy ra A = 9999931999 + 5555571999 = ...7 + ...3 = ....0

Vì A có chữ số tận cùng là 0 nên A chia hết cho 5. 

binhero chibi
Xem chi tiết
binhero chibi
9 tháng 11 2016 lúc 12:18

giúp mình với các bạn

Nguyễn Thị Huyền
18 tháng 1 2019 lúc 12:55

đương 23