Những câu hỏi liên quan
Đinh Văn Nguyên
Xem chi tiết
Nguyễn Thiên Kim
28 tháng 7 2016 lúc 12:48

Ta có:  \(a^2+b^2+1=2\left(ab+a+b\right)\)

\(\Leftrightarrow\)\(a^2+b^2+1-2ab-2a-2b=0\)

\(\Leftrightarrow\)\(\left(a^2-2ab+b^2\right)-2a+2b+1-4b=0\)

\(\Leftrightarrow\)\(\left(a-b\right)^2-2\left(a-b\right)+1=4b\)

\(\Leftrightarrow\)\(\left(a-b-1\right)^2=4b\)                                                             \(\left(1\right)\)

Do đó \(4b\)là một số chính phương, mà 4 là số chính phương suy ra b là số chính phương.

Đặt  \(b=x^2,\)thay vào \(\left(1\right)\):                           \(\left(a-x^2-1\right)^2=4x^2\)

                                                                   \(\Leftrightarrow\)\(\left(a-x^2-1\right)^2=\left(2x\right)^2\)

                  * Xét 2 trường hợp:

- Trường hợp 1: \(a-x^2-1=2x\)\(\Leftrightarrow\)\(a=x^2+2x+1=\left(x+1\right)^2\)

Ta có  \(b=x^2\)và  \(a=\left(x+1\right)^2\)\(\Rightarrow\)\(a\)và  \(b\)là 2 số chính phương liên tiếp.

- Trường hợp 2:  \(a-x^2-1=-2x\)\(\Leftrightarrow\)\(a=x^2-2x+1=\left(x-1\right)^2\)

Ta có  \(b=x^2\)và  \(a=\left(x-1\right)^2\)\(\Rightarrow\)\(a\)và  \(b\)là 2 số chính phương liên tiếp.

                           Vậy  \(a\)và  \(b\)là 2 số chính phương liên tiếp.

Bình luận (0)
luffy
28 tháng 7 2016 lúc 9:06

hi chao ban

Bình luận (0)
Nguyễn Hoàng Phúc
28 tháng 7 2016 lúc 10:40

hello bạn

Bình luận (0)
Flash Dragon
Xem chi tiết
Đỗ Hoàng Nhi
12 tháng 7 2020 lúc 20:20

thx ban

Bình luận (0)
 Khách vãng lai đã xóa
Le Anh Thi
21 tháng 4 2021 lúc 16:38

Để \(\frac{2a+2b}{ab+1}\) là bình phương của 1 số nguyên thì 2a + 2b chia hết cho ab + 1; mà ab + 1 chia hết cho 2a + 2b => ab + 1 = 2b + 2a
=> \(\frac{2a+2b}{ab+1}\)=1 = 12

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Ngọc Anh
Xem chi tiết
Dang Tung
12 tháng 6 2023 lúc 20:35

Sửa đề : \(\dfrac{a^2}{a^2+b}+\dfrac{b^2}{b^2+a}\le1\\ \) (*)

\(< =>\dfrac{a^2\left(b^2+a\right)+b^2\left(a^2+b\right)}{\left(a^2+b\right)\left(b^2+a\right)}\le1\\ < =>a^2b^2+a^3+b^2a^2+b^3\le\left(a^2+b\right)\left(b^2+a\right)\) ( Nhân cả 2 vế cho `(a^{2}+b)(b^{2}+a)>0` )

\(< =>a^3+b^3+2a^2b^2\le a^2b^2+b^3+a^3+ab\\ < =>a^2b^2\le ab\\ < =>ab\le1\) ( Chia 2 vế cho `ab>0` )

Do a,b >0 

Nên áp dụng BDT Cô Si :

\(2\ge a+b\ge2\sqrt{ab}< =>\sqrt{ab}\le1\\ < =>ab\le1\)

Do đó (*) luôn đúng

Vậy ta chứng minh đc bài toán

Dấu "=" xảy ra khi : \(a=b>0,a+b=2< =>a=b=1\)

Bình luận (0)
LÊ ĐÌNH HẢI
22 tháng 7 2023 lúc 19:27

a Sửa đề : Chứng minh \(\dfrac{a^2}{a^2+b}\)+\(\dfrac{b^2}{b^2+a}\)\(\le\) 1 ( Đề thi vào 10 Hà Nội).

Bất đẳng thức trên tương đương : 

\(\dfrac{a^2+b-b}{a^2+b}\)+\(\dfrac{b^2+a-a}{b^2+a}\)\(\le\)1

\(\Leftrightarrow\) 1 - \(\dfrac{b}{a^2+b}\)+ 1 - \(\dfrac{a}{b^2+a}\)\(\le\)1

\(\Leftrightarrow\)1 - \(\dfrac{b}{a^2+b}\) - \(\dfrac{a}{b^2+a}\)\(\le\)0

\(\Leftrightarrow\)\(\dfrac{b}{a^2+b}\)\(\dfrac{a}{b^2+a}\)\(\le\)-1

\(\Leftrightarrow\)\(\dfrac{a}{b^2+a}\)\(\dfrac{b}{a^2+b}\)\(\ge\)1

Xét VT = \(\dfrac{a^2}{ab^2+a^2}\)\(\dfrac{b^2}{a^2b+b^2}\)\(\ge\)\(\dfrac{\left(a+b\right)^2}{ab^2+a^2+a^2b+b^2}\) (Cauchy - Schwarz)

\(\dfrac{\left(a+b\right)^2}{ab\left(b+a\right)+a^2+b^2}\)

\(\ge\)\(\dfrac{\left(a+b\right)^2}{2ab+a^2+b^2}\)

\(\dfrac{\left(a+b\right)^2}{\left(a+b\right)^2}\)= 1

Vậy BĐT được chứng minh

Dấu '=' xảy ra \(\Leftrightarrow\)a = b = 1

Bình luận (0)
Khánh Huyền
Xem chi tiết
Lê Thị Thục Hiền
7 tháng 6 2021 lúc 17:23

a)Có \(a^2+1\ge2a\) với mọi a; \(b^2+1\ge2b\) với mọi b

Cộng vế với vế \(\Rightarrow a^2+b^2+2\ge2\left(a+b\right)\)

Dấu = xảy ra <=> a=b=1

b) Áp dụng BĐT bunhiacopxki có:

\(\left(x+y\right)^2\le\left(1+1\right)\left(x^2+y^2\right)\Leftrightarrow\left(x+y\right)^2\le2\)

\(\Leftrightarrow-\sqrt{2}\le x+y\le\sqrt{2}\)

\(\Rightarrow\left(x+y\right)_{max}=\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=\dfrac{\sqrt{2}}{2}\)

\(\left(x+y\right)_{min}=-\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=-\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=-\dfrac{\sqrt{2}}{2}\)

c) \(S=\dfrac{1}{ab}+\dfrac{1}{a^2+b^2}=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\dfrac{1}{2ab}\)

Với x,y>0, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) (1)

Thật vậy (1) \(\Leftrightarrow\dfrac{y+x}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)\(\Leftrightarrow\left(x-y\right)^2\ge0\) (lđ)

Áp dụng (1) vào S ta được:

\(S\ge\dfrac{4}{a^2+b^2+2ab}+\dfrac{1}{2ab}\)

Lại có: \(ab\le\dfrac{\left(a+b\right)^2}{4}\) \(\Leftrightarrow2ab\le\dfrac{\left(a+b\right)^2}{2}\Leftrightarrow2ab\le\dfrac{1}{2}\)\(\Rightarrow\dfrac{1}{2ab}\ge2\)

\(\Rightarrow S\ge\dfrac{4}{\left(a+b\right)^2}+2=6\)

\(\Rightarrow S_{min}=6\Leftrightarrow a=b=\dfrac{1}{2}\)

Bình luận (0)
Nguyễn Thị Hà Phương
Xem chi tiết
Nguyễn Thảo
Xem chi tiết
Nguyễn An
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 8 2021 lúc 21:38

\(\left(a^2+b^2-2\right)\left(a+b\right)^2+\left(1-ab\right)^2+4ab=0\)

\(\Leftrightarrow\left[\left(a+b\right)^2-2\left(ab+1\right)\right]\left(a+b\right)^2+1+2ab+a^2b^2=0\)

\(\Leftrightarrow\left(a+b\right)^4-2\left(a+b\right)^2\left(ab+1\right)+\left(ab+1\right)^2=0\)

\(\Leftrightarrow\left[\left(a+b\right)^2-\left(ab+1\right)\right]^2=0\)

\(\Leftrightarrow\left(a+b\right)^2-\left(ab+1\right)=0\)

\(\Leftrightarrow ab+1=\left(a+b\right)^2\)

\(\Rightarrow\sqrt{ab+1}=\left|a+b\right|\) là số hữu tỉ (đpcm)

Bình luận (0)
KID Magic Kaito
Xem chi tiết
Phượng Nguyễn
27 tháng 9 2018 lúc 20:21

ko ai làm được à???huhu

Bình luận (0)
Nguyễn Trâm Anh
Xem chi tiết