$\frac{x}{3}=\frac{y}{4}$ và x^2 + y^2 =25
Rút gọn và tính giá trị của biểu thức tại x = -1,76 và y = 3/25
\(P=\left[\left(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-xy-2y^2}\right):\frac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\right]:\frac{x+1}{2x^2+y+2}\)
\(P=\left[\left(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-xy-2y^2}\right):\frac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\right]:\frac{x+1}{2x^2+y+2}\)
\(P=\left[\left(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{\left(x+y\right)\left(x-2y\right)}\right):\frac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+y\right)\left(x+1\right)}\right]:\frac{x+1}{2x^2+y+2}\)
\(P=\left(\frac{\left(x-y\right)\left(x+y\right)+x^2+y^2+y-2}{\left(x+y\right)\left(2y-x\right)}.\frac{\left(x+y\right)\left(x+1\right)}{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}\right):\frac{2x^2+y+2}{x+1}\)
\(P=\left(\frac{2x^2+y-2}{2y-x}.\frac{x+1}{2x^2+y-2}\right).\frac{1}{x+1}\)
\(P=\frac{1}{2y-x}\)
Tại \(x=-1,76\) và \(y=\frac{3}{25}\) thì giá trị của \(Q=\frac{1}{2}\)
Rút gọn và tính giá trị của biểu thức tại x = -1,76 và y = 3/25
\(P=\left[\left(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-xy-2y^2}\right):\frac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\right]:\frac{x+1}{2x^2+y+2}\)
Đặt \(A=\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-xy-2y^2}\)
\(B=\frac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\)
\(C=\frac{x+1}{2x^2+y+2}\)
Ta có:
A = \(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-y^2-xy-y^2}=\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{\left(x-2y\right)\left(x+y\right)}=\frac{\left(x-y\right)\left(x+y\right)+x^2+y^2+y-2}{\left(2y-x\right)\left(x+y\right)}\)
=>A=\(\frac{x^2-y^2+x^2+y^2+y-2}{\left(2y-x\right)\left(x+y\right)}=\frac{2x^2+y-2}{\left(2y-x\right)\left(x+y\right)}\)
B=\(\frac{\left(2x^2\right)^2+2.2x^2.y+y^2-4}{x^2+xy+x+y}=\frac{\left(2x^2+y\right)^2-4}{x\left(x+y\right)+\left(x+y\right)}=\frac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+1\right)\left(x+y\right)}\)
=>\(P=\left(A:B\right):C\)
\(=\left[\frac{2x^2+y-2}{\left(2y-x\right)\left(x+y\right)}:\frac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+y\right)\left(x+1\right)}\right]:\frac{x+1}{2x^2+y+2}\)
\(=\frac{2x^2+y-2}{\left(2y-x\right)\left(x+y\right)}.\frac{\left(x+y\right)\left(x+1\right)}{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}.\frac{2x^2+y+2}{x+1}\)
\(=\frac{1}{2y-x}\)
=>\(P=\frac{1}{2y-x}\)
Thế x=-1,76 và y=3/25 vào P
=>\(P=\frac{1}{2.\frac{3}{25}-1,76}=\frac{1}{2}\)
Tìm x, y, z, biết:
a) \(\frac{x}{2}=\frac{y}{5}\) và xy = 250
b) \(\frac{x}{3}=\frac{y}{4}\) và x2 + y2 = 25
c) \(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{4}\) và x - y + z = 49
b) Ta đặt \(\frac{x}{3}và\frac{y}{4}=k\Rightarrow x=3k;y=4k\)
Vì x2+y2=25 nên 9k2+16k2=25; 25k2=25; k2=1 hoặc -1
=> x=3 hoặc -3 ; y =4 hoặc -4
bài 1: cho x, y thuộc Q. cmr:
|x + y| =< |x| + |y|
bài 2: tính:
\(A=\frac{\left(13\frac{1}{4}-2\frac{5}{27}-10\frac{5}{6}\right).230\frac{1}{25}+46\frac{3}{4}}{\left(1\frac{3}{7}+\frac{10}{3}\right):\left(12\frac{1}{3}-14\frac{2}{7}\right)}\)
bài 3: cho a + b + c = a^2 + b^2 + c^2 = 1 và x : y : z = a : b : c.
cmr: (x + y + z)^2 = x^2 + y^2 + z^2
1
fddfssdfdsfdssssssssssssssffffffffffffffffffsssssssssssssssssssfsssssssssssssssssssssssfffffffffffffffEz lắm =)
Bài 1:
Với mọi gt \(x,y\in Q\) ta luôn có:
\(x\le\left|x\right|\) và \(-x\le\left|x\right|\)
\(y\le\left|y\right|\) và \(-y\le\left|y\right|\Rightarrow x+y\le\left|x\right|+\left|y\right|\) và \(-x-y\le\left|x\right|+\left|y\right|\)
Hay: \(x+y\ge-\left(\left|x\right|+\left|y\right|\right)\)
Do đó: \(-\left(\left|x\right|+\left|y\right|\right)\le x+y\le\left|x\right|+\left|y\right|\)
Vậy: \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
Dấu "=" xảy ra khi: \(xy\ge0\)
Bài 3:
Ta có: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=x+y+z\) (vì a + b + c = 1)
Do đó: \(\left(x+y+z\right)^2=\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\) (vì a2 + b2 + c2 = 1)
Vậy: (x + y + z)2 = x2 + y2 + z2
1) \(\frac{24}{-12}=\frac{x}{5}=\frac{-y}{3}\)Tìm x và y
2) \(\frac{1}{3}+\frac{-2}{5}+\frac{1}{6}+\frac{-5}{25}\le\frac{x}{10}< \frac{-3}{4}+\frac{4}{14}+\frac{-2}{8}+\frac{-3}{5}+\frac{5}{7}\)Tìm x
3) \(\frac{8.x+18}{2.x+6}\)Tìm x
a) \(3x=4y\)và \(x^2+y^2=25\)
b) \(16x^2=9y^2\)và \(y^2-x^2=28\)
c)\(\frac{x}{y}=\frac{3}{4}\)và \(3x^2-2xy=3\)
d)\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)và \(2x+y=2z\)
Tìm x, y, z nhé
Đặt
\(3x=4y=k\Rightarrow\frac{x}{4}=\frac{y}{3}=k\Rightarrow x=4k;y=3k.\)
Thay vào biểu thức ta có :
x2 + y2 = 25
=> ( 4k )2 + ( 3k )2 = 25
=> 16k2 + 9k2 = 25
=> k2 .( 16 + 9 ) = 25
=> k2 . 25 = 25
=> k2 = 1
=> k = 1
\(\Rightarrow\frac{x}{4}=1\Rightarrow x=4\)
\(\frac{y}{3}=1\Rightarrow y=3\)
Vậy x = 4 ; y = 3
các phần khác làm tương tự nha
Tìm x;y;z biết :
a) Giải
Từ \(3x=4y\Rightarrow\frac{x}{4}=\frac{y}{3}\)
Đặt \(\frac{x}{4}=\frac{y}{3}=k\)
\(\Rightarrow x=4k;y=3k\left(1\right)\)
Lại có : \(x^2+y^2=25\left(2\right)\)
Thay (1) vào (2) ta có :
\(\left(4k\right)^2+\left(3k\right)^2=25\)
\(\Rightarrow k^2.4^2+k^2.3^2=25\)
\(\Rightarrow k^2.16+k^2.9=25\)
\(\Rightarrow k^2.\left(16+9\right)=25\)
\(\Rightarrow k^2.25=25\)
\(\Rightarrow k^2=1^2\)
\(\Rightarrow k=\pm1\)
Nếu k = 1
=> x = 3.1 = 3 ;
y = 4.1 = 4
Vậy x = 3 ; y = 4
Bài 1: \(\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-...+\frac{1}{49}-\frac{1}{50}\right):\left(\frac{1}{25}+\frac{1}{26}+...+\frac{1}{50}\right)\)
Bài 2: Tìm \(x;y\)biết:
\(\frac{x-3}{y-2}=\frac{3}{2}\)và \(x-y=4\)
Bài 1:
\(\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\right)\):\(\left(\frac{1}{25}+\frac{1}{26}+....+\frac{1}{50}\right)\)
= \(\left[\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\right]\):\(\left(\frac{1}{25}+\frac{1}{26}+....+\frac{1}{50}\right)\)
= \(\left[\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\right]\):\(\left(\frac{1}{25}+\frac{1}{26}+....+\frac{1}{50}\right)\)
=\(\left[\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\right]\):\(\left(\frac{1}{25}+\frac{1}{26}+....+\frac{1}{50}\right)\)
=\(\frac{1}{26}+\frac{1}{27}+....+\frac{1}{26}\):\(\left(\frac{1}{25}+\frac{1}{26}+....+\frac{1}{50}\right)\)
......????
Tìm x,y và z biết
1 .\(\frac{x}{2}=\frac{y}{3};\frac{y}{2}=\frac{z}{4}\)và x+y+z=46
2.\(\frac{x}{3}=\frac{z}{4};\frac{y}{2}=\frac{z}{3}\)và x-y-z=33
3.\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\)và 2x+3y-4z=93
4 . \(\frac{x}{2}=\frac{y}{3};2y=3z\)và x+y+z=49
Đỗ Ngọc Hải nhưg ko bt cách lm ^^ đúng ko Miki Thảo
Làm cho câu 1 vậy, các câu sau tương tự
\(\frac{x}{2}=\frac{y}{3}\Rightarrow x=y.\frac{2}{3};\frac{y}{2}=\frac{z}{4}\Rightarrow z=y.2\)
=> x+y+z = \(y.\frac{2}{3}+y+y.2=46\)
\(y.\left(\frac{2}{3}+1+2\right)=46\)
\(y.3\frac{2}{3}=46\)
=> \(y=12\frac{6}{11}\)
=> \(x=12\frac{6}{11}.\frac{2}{3}=8\frac{4}{11}\)
=> \(z=12\frac{6}{11}.2=25\frac{1}{11}\)
\(\frac{x+2}{5}=\frac{1}{x-2}\) \(\frac{X^2}{6}=\frac{24}{25}\)\(\frac{x}{3}=\frac{Y}{4}\)và x2 +y2= 100
a) Ta có: \(\frac{x+2}{5}=\frac{1}{x-2}\Leftrightarrow\left(x+2\right).\left(x-2\right)=5\)
\(\Rightarrow x^2-4=5\)
\(\Rightarrow x^2=9\)
\(\Rightarrow x=\left\{3;-3\right\}\)
b) \(\frac{x^2}{6}=\frac{24}{25}\Rightarrow x^2=\frac{6.24}{25}=\frac{144}{25}\)
\(\Rightarrow x=\left\{\frac{12}{5};\frac{-12}{5}\right\}\)
c) \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2}{3^2}=\frac{y^2}{4^2}=\frac{x^2+y^2}{3^2+4^2}=\frac{100}{25}=4\)
\(\Rightarrow x^2=4.9=36\Rightarrow x=\left\{-6;6\right\}\)
\(y^2=4.16=64\Rightarrow y=\left\{-8;8\right\}\)
1 ) Ta có :
\(\frac{x+2}{5}=\frac{1}{x-2}\)
\(\Rightarrow\left(x+2\right)\left(x-2\right)=1.5\)
\(\Rightarrow\left(x+2\right)x-\left(x+2\right).2=5\)
\(\Rightarrow x^2+2x-2x-4=5\)
\(\Rightarrow x^2-4=5\)
\(\Rightarrow x^2=5+4\)
\(\Rightarrow x^2=9\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
Vậy ...
2 )
\(\frac{x^2}{6}=\frac{24}{25}\Rightarrow x^2=\frac{24}{25}.6=\frac{144}{25}\Rightarrow\orbr{\begin{cases}x=\frac{12}{5}\\x=-\frac{12}{5}\end{cases}}\)
Vậy ...
3 )
Ta có :
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}\)và \(x^2+y^2=100\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
\(\Rightarrow\hept{\begin{cases}x^2=4.9=36\\y^2=4.16=64\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)
Vậy ...
Có 64 tờ giấy bạc gồm 3 loại 2000 đồng , 5000 đồng , 16 000 đồng . biết tổng giá trị của mỗi loại giấy bạc trên đều bằng nhau . Hòi mỗi loại giấy bạc có bao nhiêu tờ