Cho tam giác đều ABC, 2 đường cao BN,CM
a) C/m tứ giác BMNC là hình thang cân
b) Tính chu vi của hình thang BMNC, biết chu vi tam giác ABC = 24dm.
Cho tam giác đều ABC, hai đường cao BN,CM
a) CM tứ giác BMNC là hình thang cân
b) Tính chu vi hình thang BMNC, biết chu vi tam giác ABC là 24dm
Vẽ hình luôn giúp mình với(╹◡╹)♡
a) Xét ∆ vuông ANC và ∆ vuông AMB ta có :
AB = AC ( ∆ABC đều)
A chung
=> ∆ANC = ∆AMB (ch-gn)
=> AN = AM
=> ∆AMN cân tại A
=> ANM = \(\frac{180°-BAC}{2}\)= \(\frac{180°-60°}{2}\)=\(60°\)
Mà ∆ABC đều
=> ABC = 60°
=> ABC = ANM = 60°
Mà 2 góc này ở vị trí đồng vị
=> NM//BC
=> NMCB là hình thang
Mà ∆ABC đều
=> BAC = ABC = ACB
=> NMCB là hình thang cân
b) Vì chu vi ∆ABC = 24dm
=> AB = AC = BC = 8cm
Vì ∆AMN cân tại A (cmt)
=> ∆AMN đều
=> MN = AM = AN
Mà BN là đường cao ∆ đều ABC
=> BN đồng thời là trung tuyến ∆ABC
=> AN = \(\frac{1}{2}Ac\)
=> MN = AN = \(\frac{1}{2}AC\:=\:\frac{8}{2}=4=NC\)
Vì BMNC là hình thang cân
=> BM = NC = AN = 4dm
Chu vi hình thang BMNC là :
4 + 4 + 4 + 8 = 20dm
Cho tứ giác đều ABC, hai đường cao BN, CM.
a. Chứng minh tứ giác BMNC là hình thang cân.
b.Tính chu vi của hình thang BMNC biết chu vi tam giác ABC bằng 24 dm.
Cho tam giác ABC đều 2 đường cao BN , CM
A, Cm. BMNC là hình thang cân
B, Tính chu vi hình thang BMNC biết chu vi tam giác ABC = 2dm
Cho tam giác đều ABC, hai đường cao BH và CK.
a,C/minh: Tứ giác BCHK là hình thang cân
b, Tính chu vi của hình thang cân BCHK biết chu vi của tam giác ABC là 24cm.
a) Xét \(\Delta ABC\)đều có H là chân đường vuông góc hạ tự B xuống cạnh đáy AC
\(\Rightarrow\)H cũng là chân đường trung tuyến hạ từ B xuống đáy AC
\(\Rightarrow AH=HC\)
Tương tự \(\Rightarrow AK=KB\)
\(\Rightarrow\)HK là đường trung bính \(\Delta ABC\)
\(\Rightarrow HK//BC\)\(\Rightarrow\)HKCB là hình thang ( 1 )
Lại có \(\Delta ABC\)đều
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\left(=60^o\right)\)( 2 )
Từ (1) và (2) \(\Rightarrow\)BCHK là hình thang cân
b) Xét \(\Delta ABC\)đều \(\Rightarrow AB=AC=BC=\frac{24}{3}=8\left(cm\right)\)
Ta có \(AK=\frac{1}{2}AB;AH=\frac{1}{2}AC\)
Mà AB = AC \(\Rightarrow AK=AH\)
Lại có \(\widehat{KAH}=60^o\)
\(\Rightarrow\Delta AHK\)đều
Mà \(AK=\frac{1}{2}AB\Rightarrow AK=\frac{1}{2}\times8=4\left(cm\right)\)
\(\Rightarrow AK=AH=HK=4\left(cm\right)\)
\(C_{BCHK}=KH+HC+BC+BK\)
\(\Leftrightarrow C_{BCHK}=KH+AH+BC+AK\)
\(\Leftrightarrow C_{BCHK}=4+4+8+4\)
\(\Leftrightarrow C_{BCHK}=20\left(cm\right)\)
Vậy ...
Cho tam giác đều ABC, hai đường cao BN và CM. a) Chứng minh tứ giác BMNC là hình thang cân. b) Tính chu vi của hình thang PMNC. Biết chi vi tam giác ABC = 20cm
a,Xét tam giác ABN và tam giác ACM có:
góc A chung
AB=AC(tam giác ABC đều)
góc ANB=góc AMC(=90*)
=>tam giác ABN =tam giác ACM(g-c-g)
=>AN=AM(2 cạnh tương ứng)
=>tam giác ANM cân tại A
=>góc ANM=\(\frac{180-gócA}{2}\left(1\right)\)
Có:tam giác ABC đều
=>góc ACB=\(\frac{180-gócA}{2}\left(2\right)\)
Từ (1) và (2)=>góc ANM =góc ACB(=\(\frac{180-gócA}{2}\))
mà hai góc này ở vị trí đồng vị
=>MN//BC
=>NMBC là hình thang
mà BN=CM(tam giác ABN=tam giác ACM)
=>NMBC là hình thang cân
Cho tam giác ABC cân tại A.Các đường cao BH,CK của tam giác ABC.
a)C/m tứ giác BCHK là hình thang cân
b)Tính chu vi hình thang BCHK biết:BH=12cm,các đường cao của hình thang,BC=13cm.
Cho tam giác đều ABC, hai đường cao BH và CK.
Chứng minh rằng: a) Tứ giác BCHK là hình thang cân.
b) tính chu vi của hình thang cân BCHK biết chu vi của tam giác ABC là 24cm.
a: Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
góc A chung
Do đó: ΔABH=ΔACK
Suy ra: AH=AK
Xét ΔABC có AH/AC=AK/AB
nên HK//BC
=>BKHC là hình thang
mà BH=CK
nên BKHC là hình thang cân
b: Xét ΔABC đều có AB=AC=BC
nên AB=AC=BC=24/3=8cm
Vì ΔABC đều
mà BH là đường cao
nên BH là phân giác của góc ABC và H là trung điểm của AC
=>HC=AC/2=4cm
Xét ΔKHB có góc KHB=góc KBH
nên ΔKHB cân tại K
=>KH=KB=CH=4cm
\(C=4+4+4+8=20\left(cm\right)\)
Cho tam giác ABC, điểm O nằm trong tam giác. Qua O vẽ đường thẳng d//BC. Đường thẳng d cắt AB và AC lần lượt ở M và N.
a, Tứ giác BMNC là hình gì? Vì sao?
b, Tìm điều kiện của tam giác ABC để BMNC là hình thang cân?
c, Tìm điều kiện của tam giác ABC để BMNC là hình thang vuông
câu a tự chứng minh, câu b giả sử BMNC là hình thang cân => góc B=góc C=> tam giác ABC cân ở A
câu c giả sử BMNC là hình thang vuông => góc B =90 độ => tam giác ABC vuông tại B
1. chứng minh răng hình thang có hai đường chéo bằng nhay là hình thang cân.
2. cho hình thang ABCD (AB//CD), biết góc B- góc C= 240 và góc A= 1.5 góc D. Tính các góc của hình thang
3. Cho hình thang ABCD (AB//CD). các tia phân giác của góc A và góc B cắt nhau tại điểm E trên cạnh đáy CD. Chứng minh rằng CD=AD+BC.
4. Cho tam giác ABC vuông cân ở A. Trên nửa mặt phẳng bờ BC không chứa đỉnh A, vẽ BD vuông với BC và BD=BC.
a) tính các góc của hình thang
b) biết AB=5 cm. tính CD
5.Cho hình thang vuông ABCD có góc A= góc D = 900, đường chéo BD vuông góc với cạnh bên BC và BD=BC.
a) tính các góc của hình thang
b) biết AB=3cm. tính độ dài các cạnh BC,CD.
6. Hình thang cân ABCD có AB//CD, AB<CD. Kẻ hai đường cao AH, BK.
a) chứng minh ằng HD=KC.
7. Cho tam giác cân ABC (AB=AC), phân giác BD,CE.
a) tú giác BEDC là hình gì?Vì sao?
b)Chứng minh BE=ED=DC.
c) biết góc A=500. Tính các góc của tứ giác BEDC.
8. cho tam giác đều ABC, hai đường cao BN,CM
a) chứng minh tứ giác BMNC là hình thang cân
b) Tính chu vi của hình thang BMNC là hình thang cân
làm đc câu ào thì đc đâu nhất thiết phải làm hết chỉ là mik đưa mấy bài đóa để mấy bn chỉ đc bài nào thì chỉ thôi mà
cho hình thang ABCD(ABsong song CD)Có AC vuông gócBD,AB=5cm, CD=12cm.Tính chiều caoBH