Tìm x,y\(\in\) Z+ biết: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{5}\)
Tìm x,y\(\in\)Z+ biết \(\frac{1}{x}+\frac{1}{y}=\frac{1}{5}\)
Ta có: \(\frac{x+y}{x.y}\) = \(\frac{1}{5}\)
5x + 5y = x.y
5x + 5y - x.y + 25 = 25
mk chỉ có thể làm tới đây à, mấy bạn giúp mk zới, mk dâng cần rất gấp
1. Tìm các số x, y, z biết rằng:\(\frac{x}{5}=\frac{y}{6},\frac{y}{8}=\frac{z}{7}\) và x + y - z = 69
2. Tìm các số x, y, z biết rằng: \(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\) và 5z - 3x - 4y = 50
3. Tìm các số x, y, z, t biết rằng:
x: y: z : t = 15: 7 :3 :1 và x - y + z - t = 10
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
Bài 1: tìm cặp số \(\left(x,y\right)\)thỏa mãn:
\(\frac{1+3y}{12}=\frac{1+5y}{5x}=\frac{1+7y}{4x}\)
Bài 2: cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)và \(a+b+c\ne0\);\(a=2017\).tính \(b,c\)
Bài 3: a) tìm x,y,z biết \(\frac{y+x+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
b) tìm x biết \(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
c) tìm x,y biết \(\frac{2x+1}{5}=\frac{4y-5}{9}=\frac{2x+4y-4}{7x}\)
d) tìm x,y,z biết \(\frac{x}{z+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z\left(x,y,z\ne0\right)\)
Bài 1: Tìm các số x; y; z biết rằng \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)và 2x + 3y - z = 124.
Bài 2: Tìm các số x; y; z biết rằng \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)
tìm x,y biết: \(\frac{1}{x}+\frac{1}{y}+\frac{2}{xy}=1\left(x,y\in Z,x\ne0,y\ne0\right)\)
<=> x+y+2=xy
<=> y+2=xy-x
<=> y+2=x(y-1)
<=> x= (y+2)/(y-1)=(y-1+3)/(y-1)= 1+ 3/(y-1)
Vậy, để x nguyên thì y-1 phải là ước của 3
=> y-1={-3; -1; 1; 3}
=> y={-2; 0; 2; 4}
=> x={0; -2; 4; 2}
Do x, y khác 0 nên các cặp x, y thỏa mãn là (4; 2) và (2; 4)
tìm x,y,z biết \(\frac{\sqrt{x-1}-1}{x-1}+\frac{\sqrt{y-5}-1}{y-5}+\frac{\sqrt{z-2019}-1}{z-2019}\)\(=\frac{3}{4}\)
Bài 2
a) Tìm x biết\(\frac{1}{2}-\left|\frac{5}{4}-2x\right|=\frac{1}{3}\)
b) Tìm x biết \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
c) Tìm ba số x, y, z thỏa mãn: \(\frac{x}{y}=\frac{10}{9};\frac{y}{z}=\frac{3}{4}\)và \(x-y+z=78\)
a) \(\frac{1}{2}-|\frac{5}{4}-2x|=\frac{1}{3}\Leftrightarrow|\frac{5}{4}-2x|=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{5}{4}-2x=\frac{1}{6}\\\frac{5}{4}-2x=-\frac{1}{6}\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=\frac{5}{4}-\frac{1}{6}=\frac{13}{12}\\2x=\frac{5}{4}+\frac{1}{6}=\frac{17}{12}\end{cases}}}\)
Tự làm nốt và kết luận
b) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\right)=0\)
Vì \(\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\right)\ne0\forall x\Rightarrow x+1=0\Leftrightarrow x=-1\)
Vậy ....
c) \(\frac{x}{y}=\frac{10}{9}\Leftrightarrow\frac{x}{10}=\frac{y}{9};\frac{y}{z}=\frac{3}{4}\Leftrightarrow\frac{y}{3}=\frac{z}{4}\Leftrightarrow\frac{y}{9}=\frac{x}{12}\)
\(\Leftrightarrow\frac{x}{10}=\frac{y}{9}=\frac{z}{12}\). Mà \(x-y+z=78\). Áp dụng t/c dãy tỉ số bằng nhau
\(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}=\frac{x-y+z}{10-9+12}=\frac{78}{13}=6\)
\(\Rightarrow x=6.10=60;y=6.9=54;z=6.12=72\)
Vậy..........
a) tìm x,y,z biết rằng \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
b) tìm x biết \(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
a) vì y+z+1/x = x+z+2/y = x+y-3/z = 1/x+y+z
=>
y+z+1/x = x+z+2/y = x+y-3=y+z+1+x+z+2+x+y-3/x+y+z = 2x+2y+2z/x+y+z = 2
=> 2 = 1/ x+y+z => x+y+z=1/2
sau đó áp dụng tính chất dãy tỉ số = hau
Tìm x, y biết
a, y = \(\frac{x^4-2x^3+1}{x^2+1}\)với x,y \(\in\)Z
b, y =\(\frac{x+1}{x^2+1}\)với x,y \(\in\)Z
c, 3x + 4y - xy = 15
d, (x + 1)(2y - 1) = 12
e, \(\frac{1}{18}< \frac{x}{12}< \frac{y}{9}< \frac{1}{4}\)với x,y \(\in\)Z
g, \(\frac{3}{x-5}=\frac{-4}{x+2}\)