Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyen Keo Do
Xem chi tiết
Phạm Hồ Thanh Quang
26 tháng 6 2019 lúc 22:49

\(\frac{x}{2}-\left(\frac{3}{5}x-\frac{13}{5}\right)=-\left(\frac{7}{5}+\frac{7}{10}x\right)\)

\(\Rightarrow\frac{5x-6x+26+14+7x}{10}=0\Rightarrow6x+40=0\Rightarrow x=-\frac{20}{3}\)

vuong hien duc
Xem chi tiết
Tớ Đông Đặc ATSM
15 tháng 7 2018 lúc 21:33

Mình làm cho bạn 2 câu khó hơn còn mấy câu còn lại dungf phương pháp quy đồng rồi chuyển vế là tính được mà

c, <=> [(x-1)/2009 ]-1 +[ (x-2)/2008] -1 = [(x-3)/2007]-1 +[(x-4)/2006]-1

<=> (x-2010)/2009 + (x-2010)/2008 = (x-2010)/2007 + (x-2010)/2006

<=> (x-2010)*(1/2009+1/2008-1/2007-1/2006)=0

=> x-2010=0 => x=2010

d, TH1 : cả hai cùng âm

=>> 2X-4 <O => X< 2 

Và 9-3x<0 =>> x> 3 

=>> loại 

Th2 cả hai cùng dương

2x-4>O => x>2 

Và 9-3x>O => x<3 

=>> 2<x<3 (tm)

Kiều Triệu Tử Long
Xem chi tiết
»βέ•Ҫɦαηɦ«
10 tháng 7 2017 lúc 21:01

Ta có : \(\left|x+\frac{13}{14}\right|=-\left|x-\frac{3}{7}\right|\)

\(\Rightarrow\left|x+\frac{13}{14}\right|+\left|x-\frac{3}{7}\right|=0\)

Mà : \(\left|x+\frac{13}{14}\right|\ge0\forall x\)

      \(\left|x-\frac{3}{7}\right|\ge0\forall x\)

Nên : \(\orbr{\begin{cases}\left|x+\frac{13}{14}\right|=0\\\left|x-\frac{3}{7}\right|=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x+\frac{13}{14}=0\\x-\frac{3}{7}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{13}{14}\\x=\frac{3}{7}\end{cases}}\)

ღᏠᎮღĐiền❤RaiBo༻꧂
Xem chi tiết
Phúc Nguyễn
17 tháng 1 2018 lúc 21:32

 Ta có: \(\hept{\begin{cases}\left|x^2-1\right|+2\ge2\\\frac{6}{\left(y+1\right)^2+3}\le\frac{6}{3}=2\end{cases}}\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}x=\pm1\\y=-1\end{cases}}\)

Trần An An
Xem chi tiết
lê thị bích ngọc
11 tháng 7 2017 lúc 21:37

\(\left(\frac{9}{x.x^2-9.x}+\frac{1}{x+_{ }3}\right):\left(\frac{x-3}{x.3+x^2}-\frac{x}{3.x+9}\right)\) đk (x\(\ne\)o; công trừ 3)

<=>\(9+\frac{x.\left(x-3\right)}{x.\left(x^2-9\right)}\):\(\frac{3.\left(x-3\right)-x^2}{3x.\left(x+3\right)}\)

<=>\(-\frac{3}{x-3}=\frac{3}{3-x}\)

Trần An An
12 tháng 7 2017 lúc 9:09

Bạn ơi mk k hiểu sao lại ra bước 2 ... bạn giải chi tiết giùm mk nha

dù sao cx cảm ơn bạn đã giúp mk

phạm_ Thị_ Thủy_ Tiên 12...
Xem chi tiết
hfbgdfd srtdfv
Xem chi tiết
Despacito
23 tháng 9 2017 lúc 21:52

1) \(\left|x-\frac{3}{5}\right|< \frac{1}{3}\)

\(\Rightarrow\orbr{\begin{cases}x-\frac{3}{5}< \frac{1}{3}\\x-\frac{3}{5}< -\frac{1}{3}\end{cases}}\Rightarrow\orbr{\begin{cases}x< \frac{1}{3}+\frac{3}{5}\\x< \frac{-1}{3}+\frac{3}{5}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x< \frac{5}{15}+\frac{9}{15}\\x< \frac{-5}{15}+\frac{9}{15}\end{cases}}\Rightarrow\orbr{\begin{cases}x< \frac{14}{15}\\x< \frac{4}{15}\end{cases}}\)

                vay \(\orbr{\begin{cases}x< \frac{14}{15}\\x< \frac{4}{15}\end{cases}}\)

2) \(\left|x+\frac{11}{2}\right|>\left|-5,5\right|\)

\(\left|x+\frac{11}{2}\right|>5,5\)

\(\Rightarrow\orbr{\begin{cases}x+\frac{11}{2}>\frac{11}{2}\\x+\frac{11}{2}>-\frac{11}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x>\frac{11}{2}-\frac{11}{2}\\x>\frac{-11}{2}-\frac{11}{2}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x>0\\x>-11\end{cases}}\)

vay \(\orbr{\begin{cases}x>0\\x>-11\end{cases}}\)

3) \(\frac{2}{5}< \left|x-\frac{7}{5}\right|< \frac{3}{5}\)

\(\Rightarrow\left|x-\frac{7}{5}\right|>\frac{2}{5}\) va \(\left|x-\frac{7}{5}\right|< \frac{3}{5}\)

\(\Rightarrow\orbr{\begin{cases}x-\frac{7}{5}>\frac{2}{5}\\x-\frac{7}{5}>\frac{-2}{5}\end{cases}}\Rightarrow\orbr{\begin{cases}x>\frac{2}{5}+\frac{7}{5}\\x>\frac{-2}{5}+\frac{7}{5}\end{cases}}\)va \(\orbr{\begin{cases}x-\frac{7}{5}< \frac{3}{5}\\x-\frac{7}{5}< \frac{-3}{5}\end{cases}}\Rightarrow\orbr{\begin{cases}x< \frac{3}{5}+\frac{7}{5}\\x< \frac{-3}{5}+\frac{7}{5}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x>\frac{9}{5}\\x>1\end{cases}}\)va \(\orbr{\begin{cases}x< 2\\x< \frac{4}{5}\end{cases}}\)

vay ....

Nguyen Trieu Hoang Minh
Xem chi tiết
Ngô Huy Hiếu
18 tháng 4 2018 lúc 8:44

\(A=\frac{\left(23\frac{11}{15}-26\frac{13}{20}\right)}{12^2+5^2}\cdot\frac{1-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}}{3^2.13.2-13.5}-\frac{19}{37}\)

\(A=\frac{\left(23+\frac{11}{15}-26+\frac{13}{20}\right)}{144+25}\cdot\frac{1-\frac{1}{5.6}-\frac{1}{6.7}-\frac{1}{7.8}}{9.13.2-13.5}-\frac{19}{37}\)

\(A=\frac{\left(23+26+\frac{11}{15}-\frac{13}{20}\right)}{169}\cdot\frac{1-\left(\frac{1}{5}-\frac{1}{6}\right)-\left(\frac{1}{6}-\frac{1}{7}\right)-\left(\frac{1}{7}-\frac{1}{8}\right)}{13.\left(9.2-5\right)}-\frac{19}{37}\)

\(A=\frac{49+\frac{44}{60}-\frac{39}{60}}{169}\cdot\frac{1-\frac{1}{5}+\frac{1}{6}-\frac{1}{6}+\frac{1}{7}-\frac{1}{7}+\frac{1}{8}}{13.13}-\frac{19}{37}\)

\(A=\frac{49+\frac{1}{20}}{169}\cdot\frac{1-\frac{1}{5}+\frac{1}{8}}{169}-\frac{19}{37}\)

\(A=\frac{49\frac{1}{20}}{169}\cdot\frac{\frac{4}{5}+\frac{5}{40}}{169}-\frac{19}{37}\)

\(A=\frac{981}{169}\cdot\frac{\frac{32}{40}+\frac{5}{40}}{169}-\frac{19}{37}\)

\(A=\frac{981}{169}\cdot\frac{\frac{37}{40}}{169}-\frac{19}{37}\)

\(A=\frac{981.\frac{37}{40}}{169^2}-\frac{19}{37}\)

\(A=\frac{\frac{36297}{40}}{28561}-\frac{19}{37}\)

\(A=\frac{907,425}{28561}-\frac{19}{37}\)

\(A=\frac{33574,725}{1056757}-\frac{542659}{1056757}\)

\(A=\frac{-509084,275}{1056757}=-0,04604282...\)

Mik chỉ làm đc thế này thôi, ôn thi học kì II tốt nha bạn!

Hien Tran
Xem chi tiết
๖ACE✪Hoàngミ★Việtツ
6 tháng 8 2017 lúc 7:30

\(\left(2x-1\right)^2-3.\left(x+2\right)^2=4.\left(x-2\right)-5.\left(x-1\right)^2\)

\(\Leftrightarrow4x^2-4x+1-3\left(x^2+4x+4\right)=4x-8-5.\left(x^2-2x+1\right)\)

\(\Leftrightarrow4x^2-4x+1-3x^2-7x-12=4x-8-5x^2+10x-5\)

\(\Leftrightarrow x^2-11x-11=14x-13-5x^2\)

\(\Leftrightarrow6x^2-25x+2=0\)

Tự làm tiếp nha

~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~

 ~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~

Hien Tran
6 tháng 8 2017 lúc 7:38

bạn giải tiếp giúp mk với được ko

๖ACE✪Hoàngミ★Việtツ
6 tháng 8 2017 lúc 7:42

Giải tới đây pt có 2 ngiệm\(\hept{\begin{cases}x_1=\frac{25+\sqrt{577}}{12}\\x_2=\frac{25-\sqrt{577}}{12}\end{cases}}\)