tính tổng sau:
S1=1+a^2+a^4+a^6+......+a^2n với (a lớn hơn hoặc bằng 2, n thuộc N)
tính các tổng sau:
S1=1+a^2+a^4+a^6+......+a^2n với (a lớn hơn hoặc bằng 2, n thuộc N)
S2=a+a^3+a^5+......+a^2n+1 với (a lớn hơn hoặc bằng 2,n thuộc N)
a2S1 = a2 + a4 + a6 +...+a2n+2
=> a2S1 - S1 = (a2 + a4 + a6 +...+a2n+2)-(1+a2 + a4 + a6 +...+a2n)
S1(a2-1) = a2n+2-1
=> S1 = (a2n+2-1):(a2-1)
Câu 2 cũng nhân với a2 là được
Cho a = 1+2+3+4+.......+n và b=2n+1(với n thuộc N, n lớn hơn hơặc bằng 2)CM rằng a và b la 2 số nguyên tố cùng nhau
AI BIẾT LÀM BÀI NÀY CHỈ GIÚP EM VỚI Ạ!! EM CẢM ƠN
Cho tổng A = 1 + 3 + 5 +.....+(2n + 1), tổng B = 2 + 4 + 6 + 8 +.....+ 2n (n thuộc N).
a)Tính số hạng của tổng A, số hạng của tổng B
b)Chứng tỏ rằng: với mọi số tự nhiên n thì tổng A là số chính phương.
c)Tổng B có thể là số chính phương không?
\(a)\) Công thức tính số hạng của một dãy số là : (Số cuối-số đầu ) chia khoảng cách rồi cộng thêm 1 .
Do đó : Số hạng của dãy số A là : \(\dfrac{\left(2n+1\right)-1}{2}+1=n+1\)
Số hạng của dãy số B là : \(\dfrac{2n-2}{2}+1=n-1+1=n\)
\(b)\) Ta có : Số hạng của dãy số A là : \(n+1\)
Do đó : tổng của A là : \(\dfrac{\left(2n+1+1\right).\left(n+1\right)}{2}=\dfrac{2\left(n+1\right)\left(n+1\right)}{2}\)
\(=\left(n+1\right)^2\)
Vì n thuộc N nên tổng của A là : một số chính phương .
\(c)\) Ta có : Số hạng của dãy số B là : n
Do đó : Tổng của dãy số B là : \(\dfrac{n.\left(2n+2\right)}{2}=\dfrac{2.n.\left(n+1\right)}{2}\)
\(=n.\left(n+1\right)\)
Ta thấy : n(n+1) là tích của 2 số tự nhiên liên tiếp nên để B là số chính phương thì khi và chỉ khi n hoặc n+1 bằng 0 .
Ta thấy chúng đều không thoả mãn .
vậy.............
Bạn xem lại câu A+B mới là số chính phương k?
Câu a) mình không hiểu đề bài cho lắm nên mình làm câu b) với c) nhé:
Ta sẽ chứng minh \(A=1+3+5+...+\left(2n-1\right)=n^2\) bằng quy nạp. Với \(n=1\) thì \(1=1^2\), luôn đúng. Giả sử khẳng định đúng đến \(n=k\). Với \(n=k+1\) thì ta có:
\(A=1+3+5+...+\left(2k+1\right)\)
\(A=1+3+5+...+\left(2k-1\right)+\left(2k+1\right)\)
\(A=k^2+2k+1\)
\(A=\left(k+1\right)^2\) là SCP.
Vậy khẳng định được chứng minh. \(\Rightarrow\) A là SCP với mọi n (đpcm).
c) Ta có \(B=2+4+6+...+2n\)
\(B=2\left(1+2+3+...+n\right)\)
Ta sẽ chứng minh \(1+2+3+...+n=\dfrac{n\left(n+1\right)}{2}\) nhưng không phải bằng quy nạp vì mình nghĩ bạn nên biết nhiều cách khác nhau để chứng minh một đẳng thức. Mình sẽ dùng phương pháp đếm bằng 2 cách để chứng minh điều này.
Ta xét 1 nhóm gồm \(n+1\) người, mỗi người đều bắt tay đúng 1 lần với 1 người khác. Khi đó ta sẽ tính số cái bắt tay đã xảy ra bằng 2 cách:
Cách 1: Ta chọn ra 1 người, gọi là người số 1, bắt tay với \(n\) người khác. Sau đó ta chọn ra người số 2, bắt tay với \(n-1\) người khác (không tính người số 1). Chọn ra người số 3, bắt tay với \(n-2\) người (không tính người số 1 và 2). Cứ tiếp tục như thế, cho đến người thứ \(n-1\) thì sẽ có 1 cái bắt tay với người thứ \(n\). Do đó số cái bắt tay đã xảy ra là \(1+2+...+n\)
Cách 2: Số cái bắt tay chính là số cách chọn 2 người (không kể thứ tự) trong n người đó. Số cách chọn ra người thứ nhất là \(n+1\), chọn ra người thứ hai là \(n\). Do đó số cách chọn 2 người có kể thứ tự sẽ là \(n\left(n+1\right)\). Nhưng do ta không tính thứ tự nên số cái bắt tay đã xảy ra là \(\dfrac{n\left(n+1\right)}{2}\).
Do vậy, ta có \(1+2+...+n=\dfrac{n\left(n+1\right)}{2}\)
Như thế, \(B=2\left(1+2+...+n\right)=2.\dfrac{n\left(n+1\right)}{2}=n\left(n+1\right)\) không thể là số chính phương, bởi vì: \(n^2=n.n< n\left(n+1\right)< \left(n+1\right)\left(n+1\right)=\left(n+1\right)^2\)
Chứng minh ab+cd lớn hơn hoặc bằng 2 và a^2 + b^2 + c^2 + d^2 lớn hơn hoặc bằng 0 với a,b,c,d > 0 thì abcd = 1
Giúp em với, được câu nào hay câu đố ạ, em cảm ơn
Chứng minh :
a) (a^2 + b^2)/2 lớn hơn hoặc bằng [(a+b)/2]^2
b) (a^2+b^2+c^2)/3 lớn hơn hoặc bằng [(a+b+c)/3]^2
c) a^2 /b^2 + b^2/a^2 + 4 lớn hơn hoặc bằng 3.(a/b+b/a) với a, b khác 0
* mọi người chuyển lời thành phân số giúp em với, tại máy em k gõ đc phân số. Em cảm ơn
c)\(\frac{a^2}{b^2}+\frac{b^2}{a^2}+4\ge3\cdot\left(\frac{a}{b}+\frac{b}{a}\right)\)
Thế : \(\frac{\left(a-b\right)^2\left(a^2-ab+b^2\right)}{a^2b^2}\ge0\)
\(\Leftrightarrow\frac{\left(b-a\right)^2\left(a^2-ab+b^2\right)}{a^2b^2}\ge0\)
\(\Leftrightarrow\frac{a^4+4a^2b^2+b^4}{a^2b^2}\ge\frac{3\left(a^2+b^2\right)}{ab}\)
\(\Leftrightarrow\frac{a^2}{b^2}+\frac{b^2}{a^2}+4\ge\frac{3a}{b}+\frac{3b}{a}\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)
\(\Rightarrow\frac{a^2}{b^2}+\frac{b^2}{a^2}+4>=3\cdot\left(\frac{a}{b}+\frac{b}{a}\right)\)
a) \(\frac{a^2+b^2}{2}\ge\left(\frac{a+b}{2}\right)^2\)
\(\Rightarrow\frac{a^2+b^2}{2}\ge\left(\frac{a+b}{2}\right)\left(\frac{a+b}{2}\right)\)
\(\Rightarrow\frac{a^2+b^2}{2}\ge\frac{\left(a+b\right)^2}{4}\)
\(\Rightarrow\frac{2\left(a^2+b^2\right)}{4}\ge\frac{\left(a+b\right)^2}{4}\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(\text{a}+b\right)^2\)
Dấu ''='' chỉ xảy ra khi a=b=1 (đpcm)
a - 2 căn a với a lớn hơn hoặc bằng 0
a) x thuộc B(12) và 20 nhỏ hơn hoặc bằng x lớn hơn hoặc bằng 50
b) x chia hết 15 và 0 < x lớn hơn hoặc bằng 40
a) ta có : 12.1 < 20 ; 12.2 > 20 và 12.4 > 50 nên các số tự nhiên x sao cho : x thuộc B(12) và 20 nhỏ hơn hoặc bằng x lớn hơn hoặc bằng 50 là 24 , 36 , 48 .
b) ta có : 15.0 = 0 ; 15.1=15 > 0 và 15.2< 40 ; 15.3 > 40 nên các số tự nhiên x sao cho : x chia hết cho 15 và 0 < x < hoặc bằng 40 là 15 và 30
Trl
-bạn KILL TEAM KILL làm đúng r nhé
Hok tốt
Cho 3 số a;b;c sao cho 0 lớn hơn hoặc bằng a lớn hơn hoặc bằng b lớn hơn hoặc bằng c lớn hơn hoặc bằng 1
Chứng minh : \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{b+1}\)lớn hơn hoặc bằng 2
Bài toán sai.
Ví dụ: a \(\ge\) b \(\ge\) c 1
Thì có a=1, b=1, c=1
\(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{b+1}=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{3}{2}<2\)
Chứng minh rằng:
Bài 1 :
a,A =1/2^2 + 1/3^2 + 1/4^2 + ... + 1/n^2 < 1
b,B = 2!/3! + 2!/4! + 2!/5! + ... + 2!/n! < 1
Bài 2 :
a, A = 1/4^2 + 1/6^2 + 1/8^2 +...+1/(2n)^2 < 1/4 ( n thuộc N; n lớn hơn hoặc =2)
b, B = 1/26 + 1/27 + 1/28 + ... + 1/50 = 1 - 1/2 + 1/3 - 1/4 + ... + 1/49 - 1/50
GIÚP MÌNH VỚI NHÉ ! 3h LÀ MÌNH PHẢI ĐI HỌC RỒI