Mấy bạn giải bài này giúp mk nha!!
CMR tổng 3 số nguyên liên tiếp chia hết cho 9
các bn ơi giải giúp mik bài này vs
CMR
a) với mọi n thuộc N thì 60n + 45 chia hết cho 15 nhưng không chia hết cho 30
b) tổng ba số nguyên liên tiếp chia hết cho 3 , tổng 4 số nguyên liên tiếp không chia hết cho 4
c) Tổng 5 số chẵn liên tiếp chia hết cho 10 , tổng 5 số lẻ liên tiếp chia 10 dư 5
d) Cho 4 số tự nhiên không chia hết cho 5 , khi chia cho 5 được các số dư khác nhau . CM : tổng của chúng chia hết cho 5
các bn ơi giải giúp mik bài này vs
CMR
a) với mọi n thuộc N thì 60n + 45 chia hết cho 15 nhưng không chia hết cho 30
b) tổng ba số nguyên liên tiếp chia hết cho 3 , tổng 4 số nguyên liên tiếp không chia hết cho 4
c) Tổng 5 số chẵn liên tiếp chia hết cho 10 , tổng 5 số lẻ liên tiếp chia 10 dư 5
d) Cho 4 số tự nhiên không chia hết cho 5 , khi chia cho 5 được các số dư khác nhau . CM : tổng của chúng chia hết cho 5
a) thấy 60 chia hết cho 15 => 60n chia hết cho 15
45 chia hết cho 15 nhưng không chi hết cho 30
=> 60n+45 chia hết cho 15 nhưng không chia hết cho 30
b) ta có 3 số nguyên liên tiếp là a,a+1,a+2
tổng của 3 số nguyên liên tiếp này là a+a+1+a+2=3a+3 chia hết cho 3
d) vì khi chia 4 stn này cho 5 nhận các số dư khác nhau => 1 số là 5k+1, 1 số là 5n+2, 1 số là 5a+3, 1 số là 5b+4 (với k,n,a,b thuộc n)
=> tổng 4 stn này là 5k+1+5n+2+5a+3+5b+4= 5(k+n+a+b)+5 chia hết cho 5
a)
60n + 45 = 15 x 4n + 3 x 15 = 15 x ( 4n + 3 )
=> Chia hết cho 30 .
_ Vì 60n chia hết cho 30 mà 45 không chia hết cho 30 .
=> 60n + 45 không chia hết cho 30 .
b)
1)
_ Gọi 3 số tự nhiên liên tiếp là : a , a + 1 , a + 2 .
Ta có : a + ( a + 1 ) + ( a + 2 ) = 3a + 3 .
Vì 3a chia hết cho 3 , 3 chia hết cho 3 .
=> Tổng 3 số tự nhiên liên tiếp chia hết cho 3 .
2)
_ Gọi 4 số tự nhiên liên tiếp là : a , a + 1 , a + 2 , a + 3 .
Ta có : a + ( a + 1 ) + ( a + 2 ) + ( a + 3 ) = 4a + 6 .
Vì 4a chia hết cho 4 , 6 không chia hết cho 4 .
=> Tổng 4 số tự nhiên liên tiếp không chia hết cho 4 .
c)
1)
_ Gọi 5 số chẵn liên tiếp là : a , a + 2 , a + 4 , a + 6 , a + 8 .
Ta có : a + ( a + 2 ) + ( a + 4 ) + ( a + 6 ) + ( a + 8 ) = 5a + 20 .
Vì 5a chia hết cho 5 , 20 chia hết cho 5 .
=> Tổng 5 số chẵn liên tiếp chia hết cho 5 .
2)
_ Gọi 5 số lẻ liên tiếp là : b , b + 2 , b + 4 , b + 6 , b + 8 .
Ta có : b + ( b + 2 ) + ( b + 4 ) + ( b + 6 ) + ( b + 8 ) = 5b + 20 .
Vì b là số lẻ nên 5b không chia hết cho 2 hay không chia hết cho 2,5 = 10 .
20 chia hết cho 10 .
=> 5b + 20 không chia hết cho 10 .
=> Tổng 5 số lẻ liên tiếp chia 10 dư 5 .
các bn ơi giải giúp mik bài này vs
CMR
a) với mọi n thuộc N thì 60n + 45 chia hết cho 15 nhưng không chia hết cho 30
b) tổng ba số nguyên liên tiếp chia hết cho 3 , tổng 4 số nguyên liên tiếp không chia hết cho 4
c) Tổng 5 số chẵn liên tiếp chia hết cho 10 , tổng 5 số lẻ liên tiếp chia 10 dư 5
d) Cho 4 số tự nhiên không chia hết cho 5 , khi chia cho 5 được các số dư khác nhau . CM : tổng của chúng chia hết cho 5
GIÚP MÌNH BÀI NÀY NHÉ CÁC BẠN ,MÌNH ĐANG CẦN GẤP ,AI TRẢ LỜI ĐƯỢC MÌNH TICK CHO. THANKS TRƯỚC:))
CMR:
bài 1/ Tích 6 số snguyeen liên tiếp chia hết cho 720
2/tích 3 số chẵn liên tiếp chia hết cho những số nào, hãy giải thích?
1/ Do trong 6 số nguyên liên tiếp bất kì luôn có 3 số chẵn gồm 2 số chia hết cho 2 và ít nhất 1 số chia hết cho 4 nên tích 6 số nguyên liên tiếp luôn chia hết cho 16 (1)
Do trong 6 số nguyên liên tiếp luôn có 2 số chia hết cho 3 => tích 6 số nguyên liên tiếp luôn chia hết cho 9 (2)
Do trong 6 số nguyên liên tiếp luôn có ít nhất 1 số chia hết cho 5 => tích 6 số nguyên liên tiếp luôn chia hết cho 5 (3)
Từ (1); (2); (3) do 16; 9; 5 nguyên tố cùng nhau từng đôi một nên tích 6 số nguyên liên tiếp luôn chia hết cho 16 x 9 x 5 hay 720 (đpcm)
2/ Do trong 3 số chẵn liên tiếp luôn có 2 số chia hết cho 1 và ít nhất 1 số chia hết cho 4 => tích của chúng chia hết cho 16
Do trong 3 số chẵn liên tiếp luôn có 1 số chia hết cho 3 nên tích của chúng chia hết cho 3
=> tích 3 số chẵn liên tiếp chia hết cho 2; 4; 6; 8; 12; 16; 24; 48
Chứng minh rằng tổng lập phương của 3 số nguyên liên tiếp thì chia hết cho 9.
Các bn giúp mk nha❤❤😊
Gọi 3 số lần lượt là : (x - 1) ; x ; (x + 1)
Có :
(x - 1)3 + x3 + (x + 1)3
= (x3 - 3.x2.1 + 3.x.12 - 1) + x3 + (x3 + 3.x2.1 + 3x.12 + 1)
= x3 - 3.x2.1 + 3.x.12 - 1 + x3 + x3 + 3.x2.1 + 3x.12 + 1
= 3x3 + 6x
= 3x3 - 3x + 9x
= 3x(x2 - 1) + 9x
= 3x.(x - 1)(x + 1) + 9x
Xét (x - 1).x.(x + 1) là tích 3 số nguyên liên tiếp
=> (x - 1).x.(x + 1) \(⋮\) 3
=> 3.(x - 1).x.(x + 1) \(⋮\) 9
Mà 9x \(⋮\) 9
=> (x - 1)3 + x3 + (x + 1)3 \(⋮\) 9
1 /
a) chứng tỏ rằng trong ba số tự nhiên liên tiếp bao giờ cũng tồn tại một số chia hết cho 3 . Hãy phát biểu bài toán tổng quát .
b)
chứng tỏ rằng trong bốn số tự nhiên liên tiếp bao giờ cũng tồn tại một số chia hết cho 4 . Hãy phát biểu bài toán tổng quát .
2 /
a) Tổng của ba số tự nhiên liên tiếp có chia hết cho 3 không ? Tại sao ?
b) Tổng của bốn số tự nhiên liên tiếp có chia hết cho 4 không ? Tại sao ?
P/s : mấy bạn vui lòng trả lời nhanh , tỉ mỉ câu này giùm mk nha !
Nếu cần mk làm câu 2 trc :
2)
a.
Gọi số tự nhiên đầu tiên là a
=> 2 số tiếp theo là a+1 và a+2
=> Tổng của chúng là :
a + a + 1 + a + 2
= 3a + 3
= 3 ( a + 2 ) chia hết cho 3 ( đpcm )
b.
Gọi số tự nhiên đầu tiên là a
=> 3 số tiếp theo là a+1; a+2 và a+3
=> tổng của chúng là :
a + a + 1 + a + 2 + a + 3
= 4a + 6
ta có 4a chia hết cho 4 mà 6 ko chia hết cho 4
=> ko chia hết
1)
a.
Gọi 3 số tự nhiên liên tiếp là a; a+1 và a+2
+) Nếu a chia hết cho 3 => đpcm
+) Nếu a ko chia hết cho 3 : ( có 2 trường hợp )
TH1 : a = 3k + 1
=> a + 2 = 3k + 1 + 2
=> a + 2 = 3k + 3
=> a + 2 = 3 ( k + 1 ) chia hết cho 3
=> a + 2 chia hết cho 3 ( đpcm )
TH2 : a = 3k + 2
=> a + 1 = 3k + 2 + 1
=> a + 1 = 3k + 3
=> a + 1 = 3 ( k + 1 ) chia hết cho 3
=> a + 1 chia hết cho 3 ( đpcm )
cmr
tổng 3 số nguyên lien tiếp chia hết cho 3
tổng 5 số liên tiếp chia hết cho 5
trong 2k+1 nguyên liên tiếp chia hết cho 2k +1
a, gọi ba số tự nhiên liên tiếp là a,a+1,a+2
ta có a+(a+1)+(a+2) = 3a +3 chia hết cho 3
vì 3a chia hết cho3 , 3 chia hết cho 3
suy ra ba số tự nhiên liên tiếp chia hết cho 3
b,gọi năm số liên tiếp là a ,a+1,a+2,a+3,a+4
ta có a+(a+1)+(a+2)+(a+3)+(a+4) = 5a +10 chia
hết cho 5
vì 5a chia hết cho 5 ,10 chia hết cho 5
suy ra năm số tự nhiên lien tiếp chia hết cho5
Vì 2k+1 là số lể nên trung bình cộng dãy đó là số nguyên nên tổng 2k+1 số nguyên liên tiếp =trung bình cộng 2k+1 số đó nhân 2k+1
mà 2k+1 chia hết cho 2k+1 nên tích đó chia hết cho 2k+1⇒⇒tổng 2k+1 số nguyên đầu tiên chia hết cho 2k+1
CMR: Tổng lập phương của 3 số nguyên liên tiếp chia hết cho 9.
Mấy bạn giúp dùm mình bài này nha:
Chứng minh:\(\left(2n+3\right)^2+9\)chia hết cho 8 với moi số nguyên n
(2n + 3)2 + 9
= (2n + 3 - 3)(2n + 3 + 3)
= 2n(2n + 6)
= 4n2 + 12n
= 4n . n + 12n
= 16n2
Vì 16 chia hết cho 8 \(\forall x\in Z\)
=> (2n + 3)2 + 9 chia hết cho 8