Chứng tỏ rằng hai góc kề bù không thể cùng nhọn
Giúp mk nhe
Cho góc aOb và bOc là hai góc kề bù .Chứng tỏ rằng góc aob và góc boc có một góc không vượt quả 90 độ
chứng tỏ rằng : nếu hai góc kề nhau có cạnh ngoài là hai tia đối nhau thì hai góc đó kề bù
hãy chứng tỏ rằng : nếu hai góc kề nhau có hai cạnh ngoài là hai tia đối nhau thì hai góc đó kề bù
Vì 2 cạnh ngoài là 2 tia đối nhau thì tao thành góc 180 độ
Suy ra đó là góc kề bù
Xét hai góc kề nhau xOy và yOz có Ox và Oz là hai tia đối nhau. \(\widehat{xOz}\)là góc bẹt (1).
Tia Oy nằm giữa hai tia Ox và Oz \(\Rightarrow\widehat{xOy}+\widehat{yOz}=\widehat{xOz}\)(2).
Từ (1) và (2) suy ra \(\widehat{xOy}+\widehat{yOz}=180^o\), do đó hai góc xOy và yOz bù nhau.
Vậy hai góc xOy và yOz kề bù.
chứng tỏ rằng hai tia phân giác của hai góc kề bù vuông góc nhau
Cho góc AOB và góc BOC là hai góc kề bù , OM , ON lần lượt là các ia phân giác của góc ACB và góc BOC
Chứng minh góc MON = 90 độ
Ta có : OM là tia phân giác của góc AOB nên tia OM nằm giữa hai tia OA và OB và góc MOB = 1/2 góc AOB
Tương tự : ON là tia pân giác của góc BOC nên ON nằm giữa hai tia OB và OC và góc BON = 1/2 góc BOC
Lại có : góc AOB và góc BOC là hai góc kề bù nên tia OB nằm giữa hai tia OA va OC
Suy ra : OB nằm giữa hai tia OM và ON nên :
góc MON = góc MOB + góc BON
= 1/2 * ( góc AOB + góc BOC )
= 1/2 * 180 độ = 90 độ
Cho góc AOB và góc BOC là hai góc kề bù , OM , ON lần lượt là các ia phân giác của góc ACB và góc BOC Chứng minh góc MON = 90 độ Ta có : OM là tia phân giác của góc AOB nên tia OM nằm giữa hai tia OA và OB và góc MOB = 1/2 góc AOB Tương tự : ON là tia pân giác của góc BOC nên ON nằm giữa hai tia OB và OC và góc BON = 1/2 góc BOC Lại có : góc AOB và góc BOC là hai góc kề bù nên tia OB nằm giữa hai tia OA va OC Suy ra : OB nằm giữa hai tia OM và ON nên : góc MON = góc MOB + góc BON = 1/2 * ( góc AOB + góc BOC ) = 1/2 * 180 độ = 90 độ
Gọi 2 góc kề bù là \(\widehat{xOy};\widehat{yOz}\)có 2 tia phân giác lần lượt là Om và On.
CM: \(Om\perp On\)
Ta có hình vẽ:
Ta có:
Góc mOy = 1/2 góc xOy(gt)
Góc yOn = 1/2 góc yOz (gt)
Vì Oy nằm giữa 2 tia Om, On nên:
Góc mOn = góc mOy + góc yOn
= 1/2 góc xOy + 1/2 góc yOz = 1/2 (góc xOy + góc yOz)
= 1/2 . 180o = 90o
=> \(Om\perp On\)
Chứng tỏ rằng hai tia phân giac của hai góc kề bù vuông góc vói nhau
* Gọi góc xOz, góc zOy là 2 góc kề bù ; và tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy.
* Để chứng minh 2 tia phân giác của 2 góc kề bù vuông góc với nhau, ta sẽ chứng minh tia Ou vuông góc tia Ov.
* Vì tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy
nên:
{ góc uOz = 1/2 góc xOz
{ góc zOv = 1/2 góc zOy
Suy ra:
{ 2 góc uOz = góc xOz
{ 2 góc zOv = góc zOy
Ta lại có:
góc xOz + góc zOy = 180 độ (vì 2 góc xOz, góc zOy kề bù)
=> 2 góc uOz + 2 góc zOv = 180 độ
=> 2(góc uOz + góc zOv) = 180 độ
=> góc uOz + góc zOv = 90 độ
=> góc uOv = 90 độ (vì 2 góc uOz, góc zOv kề nhau)
=> Tia Ou vuông góc Tia Ov
Do đó, 2 tia phân giác của 2 góc kề bù thì vuông góc với nhau.
Hãy chứng tỏ rằng hai góc kề bù có một góc là góc vuông.
* Gọi \(\widehat{xOz}\),\(\widehat{zOy}\) là 2 góc kề bù ; và tia Ou, Ov lần lượt là tia phân giác của \(\widehat{xOz,}\) \(\widehat{zOy}\)
* Để chứng minh 2 tia phân giác của 2 góc kề bù vuông góc với nhau, ta sẽ chứng minh tia Ou vuông góc tia Ov.
* Vì tia Ou, Ov lần lượt là tia phân giác của\(\widehat{xOz}\) ,\(\widehat{zOy}\)
nên:
{ \(\widehat{uOz}\) = \(\frac{1}{2}\widehat{xOz}\)
{\(\widehat{zOv}\) = \(\frac{1}{2}\widehat{zOy}\)
Suy ra:
{\(2\widehat{uOz}\) = \(\widehat{xOz}\)
{ \(2\widehat{zOv}\) = \(\widehat{zOy}\)
Ta lại có:
\(\widehat{xOz}\) + \(\widehat{zOy}\) = \(180^o\)
=> \(2\widehat{uOz}\) + \(2\widehat{zOv}\) = \(180^o\)
=> \(2\left(\widehat{uOz}+\widehat{zOv}\right)\)=\(180^o\)
=> \(\widehat{uOz}+\widehat{zOv}=90^o\)
=> \(\widehat{uOv}=90^o\)
=> Tia Ou vuông góc Tia Ov
Do đó, 2 tia phân giác của 2 góc kề bù thì vuông góc với nhau.
cho tam giac ABC có AB=AC. Vẽ BD vuông góc với Ac tại D, CE vuông góc với AB tại E. Gọi I là giao điềm của BD và CE.C/m:
a) Bd=CE
b)EI=DI
c) ba điểm A,I,H thẳng hàng ( với H là trung điểm của BC)
Vẽ hai góc kề bù AOB và AOC sao cho AOC = 800
a)Tính AOB
B)TRÊN CÙNG MỘT NỬA MẶT PHẲNG BỜ BC CHỨA TIA OA SAO CHO BOD=1400. CHỨNG TỎ OD LÀ TIA PHÂN GIÁC CỦA AOC.
GIÚP GIÙM MIK NHE! VẼ HÌNH LUN NHA! NHANH NHANH MK ĐANG CẦN GẤP
Chứng tỏ rằng hai tia phân giác của 2 góc kề bù thì vuông góc với nhau.
Xét các tia x'ox và y'oy, có hai góc đối đỉnh là xoy và x'oy'
gọi ot và ot' là hai tia phân giác tương ứng
Thấy: góc xoy = góc x'oy'
=> góc yot = góc y'ot'
Ta có: góc xoy + góc xoy' = góc toy' + góc yot = 180o
<=> góc toy' + góc y'ot' = góc tot' = 180o
=> ot và ot' là hai tia đối nhau.
* Gọi góc xOz, góc zOy là 2 góc kề bù ; và tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy.
* Để chứng minh 2 tia phân giác của 2 góc kề bù vuông góc với nhau, ta sẽ chứng minh tia Ou vuông góc tia Ov.
* Vì tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy
nên:
{ góc uOz = 1/2 góc xOz
{ góc zOv = 1/2 góc zOy
Suy ra:
{ 2 góc uOz = góc xOz
{ 2 góc zOv = góc zOy
Ta lại có:
góc xOz + góc zOy = 180 độ (vì 2 góc xOz, góc zOy kề bù)
=> 2 góc uOz + 2 góc zOv = 180 độ
=> 2(góc uOz + góc zOv) = 180 độ
=> góc uOz + góc zOv = 90 độ
=> góc uOv = 90 độ (vì 2 góc uOz, góc zOv kề nhau)
=> Tia Ou vuông góc Tia Ov
Do đó, 2 tia phân giác của 2 góc kề bù thì vuông góc với nhau.
Góc kề bù là hình gồm 2 tia đối nhau
Và có tổng số đo là : 180 độ, có 1 cạnh chung
Vì tia phân giác là tia nằm giữa 2 tia còn lại và chia góc đó làm 2 phần bằng nhau
Tia phân giác của góc kề bù có số đo là:
180 : 2 = 90 độ
Vì góc có số đo là 90 độ là góc vuông
=> Tia phân giác của 2 góc kề bù vuông góc với nhau ( đpcm )
Cho hai góc kề bù góc xOy và góc yOz. Gọi Om là p/g của góc xOy. Vẽ tia On vuông góc với Om
Chứng tỏ rằng On là tia p/g của góc yOz
( KHÔNG CẦN VẼ HÌNh NHÉ! )
ai làm đúng mk tk cho, thanks
Ta có : \(O_2+O_3=90^o\)
\(O_1+O_4=90^o\)
Mà \(O_1=O_2\)( vì Om là phân giác \(\widehat{xOy}\))
\(\Rightarrow O_3=O_4\)
Hay On là phân giác \(\widehat{zOy}\)