Tổng \(x+y+z\) thõa mãn :
\(\frac{x+3}{5}=\frac{y-2}{2}=\frac{z+1}{-9}\) và \(5x+3y+z=56\)
Bài 1: Tìm x, y, z thõa mãn các điều kiện sau:
\(\frac{5z-6y}{4}=\frac{6x-4z}{5}=\frac{4y-5z}{6}\) và\(3x-2y+5z=96\)
Bài 2: Tìm x, y, z thão mãn:
a. \(2x=3y=7z\) và \(x+y+z-13=0\)
b. \(\left(x+y\right):\left(5-z\right):\left(y+z\right):\left(7+y\right)=3:1:2:5\)
c. \(\frac{x}{y+z-2}=\frac{y}{x+z+1}=\frac{z}{x+y+1}=x+y+z\)
d. \(\frac{x-2003}{2}=\frac{y-2004}{6}=\frac{z-2009}{8}\) và \(x+2y-z=4009\)
e. \(\frac{x^2}{9}=\frac{y^2}{25}\) và \(x\cdot y=15\)
f. \(\frac{x^2-y^2}{3}=\frac{y^2+x^2}{-5}=x^{10}\cdot y^{10}=1024\)
g. \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\) và \(x^2+y^2+z^2=14\)
h. \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)
i. \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và \(x\cdot y+y\cdot z+x\cdot z=31\)
k. \(7x=3y:5y=7z\) và \(x\cdot y+x\cdot z-y\cdot z=4\)
Bìa 3: Tính
\(Cho
\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
Tính
\(a. A=\frac{5x+3y}{5y-4z}\)
\(b. B=\frac{x+2y-3z}{3y+2z-5x}\)
\(c. C=\frac{2y-3z}{x+y+z}\)
Bài 4:
\(Cho
\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\) với \(a+b+c\ne0\) và \(a=2011\)
Tính b và 3b-4c
\(\frac{x}{5}=\frac{y}{4}=\frac{z}{7}\)và x+2y+z =10
\(\frac{x}{4}=\frac{y}{5}=\frac{z}{2}\)và x+y=18
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và 5x-z=20
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và 2x+y-z=9
2x=3y=5z và x-2y+3z=65
a./ \(\frac{x}{5}=\frac{y}{4}=\frac{z}{7}=\frac{2y}{8}=\frac{x+2y+z}{5+8+7}=\frac{10}{20}=\frac{1}{2}\)
\(\Rightarrow x=\frac{5}{2};y=2;z=\frac{7}{2}\)
b./ \(\frac{x}{4}=\frac{y}{5}=\frac{z}{2}=\frac{x+y}{9}=\frac{18}{9}=2\)
\(\Rightarrow x=2\cdot4=8;y=2\cdot5=10;z=2\cdot2=4\)
tong x+y+z thoả mãn x+3/5=y-2/2=z+1/-9 va 5x+3y+z=56
Tìm x;y;z
a} \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\) và x - 3y + 4z = 62
b} 5x = 8y = 20z và x - y - z = 3
c} \(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\) và -x + y + z = -120
\(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}=\)\(\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}\)
Áp dụng tính chất của dãy tủ số bằng nhau ta có:
\(\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)
\(\frac{x}{4}=2=>x=8\)
\(\frac{3y}{9}=2=>y=6\)
\(\frac{4z}{36}=2=>z=18\)
Ta có: a) \(\hept{\begin{cases}\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\\x-3y+4x=62\end{cases}\Rightarrow\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2}\)
\(\Rightarrow\hept{\begin{cases}x=2.4=8\\y=2.3=6\\z=2.9=18\end{cases}}\)
a) Ta có: x/4=y/3=z/9=x-3y+4z/4-9+36=62/31=2
x/4=2 => x=2.4=8
y/3=2 => y=2.3=6
z/9=2 => z=2.9=18
Vậy x=8; y=6; z=18.
1.Cho x,y,z khác 0 thõa mãn x+y+z=xyz và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\sqrt{3}\)
Tính P= \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
Ta có: \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{xz}+\frac{1}{yz}\right)\)
\(\left(\sqrt{3}\right)^2=P+\frac{2\left(z+y+x\right)}{xyz}\)
Mà x+y+z=xyz
=> P+2=3=>P=1
Vậy P=1
Cho x,y,z dương thõa mãn x+y+z =3
Chứng minh rằng \(\frac{x}{1+y^2}+\frac{y}{1+z^2}+\frac{z}{1+x^2}>=\frac{3}{2}\)
\(\frac{x}{1+y^2}+\frac{y}{1+z^2}+\frac{z}{1+x^2}\ge\frac{3}{2}\)
\(\Rightarrow\left(x+y+z\right)\left(\frac{x}{1+y^2}+\frac{y}{1+z^2}+\frac{z}{1+x^2}\right)\ge\frac{3}{2}\)
\(\Rightarrow\)\(\frac{x+y+z}{2}\ge\frac{3}{2}\)
Dấu ''='' chỉ xảy ra khi x=y=z=1
Để mình nghiên cứu giải cách khác
Mình giải áp dụng theo BĐT Nesbit (3 phần tử giống với đề bài )
Mình chứng minh theo Nesbit :
\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)=\frac{a+b+c}{2}\)
\(\Rightarrow\frac{a+b+c}{2}\ge\frac{3}{2}\)
\(\Rightarrow2\left(a+b+c\right)\ge6\)
1.Tìm x, y, z biết
a, \(\frac{x}{1}\) = \(\frac{y}{2}\) =\(\frac{z}{3}\) và 4x -3y + 2z = 36
b, x : y : z = 3 : 5 : (-2) và 5x - y + 37 = 124
c, 2x = 3y ; 5y = 2z và 3x - 2y + 5z = -30
d, \(\frac{x}{12}\) =\(\frac{y}{9}\)=\(\frac{z}{5}\) và x . y . z = 20
2. Cho \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\) Tính giá trị biểu thức
A = \(\frac{x-y+z}{x+2y-z}\)
3. Tìm 2 số biết tỉ số của chúng bằng \(\frac{5}{7}\)và tổng các bình phương của chúng bằng 4736
Tìm x,y,z biết :
a) \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\)và x-3y+4z=62
b) \(\frac{x}{y}=\frac{9}{7};\frac{y}{7}=\frac{7}{3}\)và x-y+z=-15
c) 5x=8y=20z và x-y-z=3
d) \(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\)và x+y+z=-120
e) \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}\)x.y.z=20
f) \(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\) và \(x^2+y^2-z^2=585\)
a) Aps dụng tính chất các dãy tỉ số bằng nhau, ta có:
x/4 =y/3 = z/9 = 3y/9 = 4z/36 = (x-3y+4z)/(4-9+36)= 62/31 = 2
=> x=2.4=8
y=2.3=6
z=2.9=18
a) \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\)
ADTCCDTSBN, ta có:
\(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)
\(\Rightarrow x=2.4=8\)
\(y=2.3=6\)
\(z=2.9=18\)
b) Đề có nhầm lẫn j k nhỉ =.=
c) \(5x=8y=20z\Leftrightarrow\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{20}}\)
ADTCCDTSBN, ta có:
\(\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{20}}=\frac{x+y+z}{\frac{1}{5}+\frac{1}{8}+\frac{1}{20}}=-\frac{15}{\frac{3}{8}}=-40\)
\(\Rightarrow x=-40:5=-8\)
\(y=-40:8=-5\)
\(z=-40:20=-2\)
b) Có vẻ là sai đề bài thì phải! Xem lại giúp mình với!
c)5x=8y=20z
=> 5x/40 = 8y/40 = 20z/40
=> x/8 = y /5 = z/2
rồi áp dụng tính chất các dãy tỉ số bằng nhau, làm tương tự như câu a!
Câu e tương tự!
Câu f bạn nhân mỗi phân số lên mũ 2 nhé!
Tìm x,y,z biết :
a) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{24}\) và 5x+y-2z= 28
b) \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)và 2x+3y-z= 186
c) 3x=2y; 7y=5z và x-y+z= 32
d) \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\) và x+y+z=49
e)\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và 2x +3y-z= 49
a) Ta có: x/10=y/6=z/24 và 5x+y—2x=28
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
x/10=y/6=z/24=5x/50+y/6–2x/48= 5x+y—2x/50+6–48=28/ 8
Ta được: x= 10.28/8=35
y= 6.28/8=21
z=24.28/8=84
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
a, x/10 =y/6=z/24= 5x/50=y/6=2z/48
áp dụng tính chất dãy tỉ số bằng nhau
5x/50=y/6=2z/48= 5x+y-2z/50+6-48=28/2=14
==>x=140
y=84
z=336
b,x/6=y/4;y/5=z/7
==>x/15=y/20 (1)
y/20=z/28 (2)
từ 1 và 2 => x/15=y/20=z/28
x/15=y/20=z/28=2x/30=3y/60=z/28
áp dụng tính chất dãy tỉ số bàng nhau
2x/30=3y/60=z/38=2x+3y-z/30+60-28=186/62=3
=>x=45
=>y=60
=>z=84