Cho ABCD là hình thang. E,F là thứ tự trung điểm của AB và CD. O là trung điểm của EF. Qua O kẻ đường thẳng song song với AB cắt AD và BC theo thứ tự là M, N.
a) EMFN là hình gì
b) Chứng minh EMFN là hình thoi. c) Chứng minh EMFN là hình vuông
Cho hình thang ABCD (AB//CD). Gọi E là trung điểm của AB, F là trung điểm của CD, O là trung điểm của EF. Qua O kẻ đường thẳng song song với CD, cắt AD và BC theo thứ tự ở M và N.
a) Chứng minh rằng M là trung điểm của AD, N là trung điểm của BC
b) Chứng minh rằng OM = ON
c) Tứ giác EMFN là hình gì?
a, Vì O là trung điểm EF
MN qua O //AB//CD
=>M là trung điểm AD, N là TD BC
Cho hình thang ABCD(AB//CD).Gọi E,F theo thứ tự là trung điểm của AB,CD.Qua trung điểm O của EF,kẻ đường thẳng song song với AB cắt AD và BC tại M,N.
a)EMFN là hình gì?Vì sao?
b)Hình thang ABCD có thêm điều kiện gì thì EMFN là hình thoi?
c)Hình thang ABCD có thêm điều kiện gì thì EMFN là hình vuông?
MỌI NGƯỜI GIÚP MÌNH VỚI Ạ.CẢM ƠN NHÌU NHÌU:333
a) Ta có: AB//CD(gt)
mà E∈AB và F∈CD
nên AE//DF và EB//FC
Xét tứ giác AEFD có AE//DF(cmt)
nên AEFD là hình thang có hai đáy là AE và DF(Định nghĩa hình thang)
Hình thang AEFD(AE//DF) có
O là trung điểm của EF(gt)
OM//AE//DF(MN//AB//DC, E∈AB, O∈MN, F∈DC)
Do đó: M là trung điểm của AD(Định lí 3 về đường trung bình của hình thang)
Xét tứ giác BEFC có BE//FC(cmt)
nên BEFC là hình thang có hai đáy là BE và FC(Định nghĩa hình thang)
Hình thang BEFC(BE//FC) có
O là trung điểm của EF(gt)
ON//EB//FC(MN//AB//DC, E∈AB, O∈MN, F∈CD)
Do đó: N là trung điểm của BC(Định lí 3 về đường trung bình của hình thang)
Xét ΔABD có
M là trung điểm của AD(cmt)
E là trung điểm của AB(gt)
Do đó: ME là đường trung bình của ΔABD(Định nghĩa đường trung bình của tam giác)
⇒ME//BD và \(ME=\dfrac{BD}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)
Xét ΔBDC có
N là trung điểm của BC(cmt)
F là trung điểm của CD(gt)
Do đó: NF là đường trung bình của ΔBDC(Định nghĩa đường trung bình của tam giác)
⇒NF//BD và \(NF=\dfrac{BD}{2}\)(Định lí 2 về đường trung bình của tam giác)(2)
Từ (1) và (2) suy ra ME//NF và ME=NF
Xét tứ giác EMFN có ME//NF(cmt) và ME=NF(cmt)
nên EMFN là hình bình hành(Dấu hiệu nhận biết hình bình hành)
b) Xét ΔBAC có
E là trung điểm của AB(gt)
N là trung điểm của BC(cmt)
Do đó: EN là đường trung bình của ΔBAC(Định nghĩa đường trung bình của tam giác)
⇒EN//AC và \(EN=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)
Hình bình hành EMFN trở thành hình thoi khi EM=EN
mà \(EM=\dfrac{BD}{2}\)(cmt) và \(EN=\dfrac{AC}{2}\)(cmt)
nên BD=AC
Vậy: Khi hình thang ABCD có thêm điều kiện BD=AC thì EMFN là hình thoi
Cho hình thang ABCD (AB//CD.Gọi E,F theo thứ tự là trung điểm của AB,CD. Gọi O là trung điểm của EF. Qua O kẻ đường thẳng song song với AB, cắt AD và BC theo thứ tự ở M và N
a, Tứ giác EMFN là hình gì ? Vì sao?
b, Hình thang ABCD có thêm điều kiện gì thì EMFN là hình thoi?
c, Hình thang ABCD có thêm điều kiện gì thì EMFN là hình vuông?
a) Ta có: AB//CD(gt)
mà E∈AB và F∈CD
nên AE//DF và EB//FC
Xét tứ giác AEFD có AE//DF(cmt)
nên AEFD là hình thang có hai đáy là AE và DF(Định nghĩa hình thang)
Hình thang AEFD(AE//DF) có
O là trung điểm của EF(gt)
OM//AE//DF(MN//AB//DC, E∈AB, O∈MN, F∈DC)
Do đó: M là trung điểm của AD(Định lí 3 về đường trung bình của hình thang)
Xét tứ giác BEFC có BE//FC(cmt)
nên BEFC là hình thang có hai đáy là BE và FC(Định nghĩa hình thang)
Hình thang BEFC(BE//FC) có
O là trung điểm của EF(gt)
ON//EB//FC(MN//AB//DC, E∈AB, O∈MN, F∈CD)
Do đó: N là trung điểm của BC(Định lí 3 về đường trung bình của hình thang)
Xét ΔABD có
M là trung điểm của AD(cmt)
E là trung điểm của AB(gt)
Do đó: ME là đường trung bình của ΔABD(Định nghĩa đường trung bình của tam giác)
⇒ME//BD và NF=BD2NF=BD2(Định lí 2 về đường trung bình của tam giác)(2)
Từ (1) và (2) suy ra ME//NF và ME=NF
Xét tứ giác EMFN có ME//NF(cmt) và ME=NF(cmt)
nên EMFN là hình bình hành(Dấu hiệu nhận biết hình bình hành)
b) Xét ΔBAC có
E là trung điểm của AB(gt)
N là trung điểm của BC(cmt)
Do đó: EN là đường trung bình của ΔBAC(Định nghĩa đường trung bình của tam giác)
⇒EN//AC và EM=BD2EM=BD2(cmt) và
cho hình thang ABCD (AB//CD).Gọi E là trung điểm của AB, F là trung điểm của CD ,O là trung điểm của EF . Qua O kẻ đường thẳng song song với CD , cắt AD và BC theo thứ tự ở M và N .
a) Chứng minh rằng M là trung điểm của AD , N là trung điểm của BC
b) Chứng minh rằng OM=ON
c)Tứ giác EMFN là hình gì ?
GIÚP MÌNH NHÉ MÌNH CẦN GẤP
cho hình thang ABCD (AB//CD). Gọi E là trung điểm của AB, F là trung điểm của CD, O là trung điểm của EF. Qua O kẻ đường thẳng song song vs CD, cắt AD và BC theo thứ tự ở M và N
Bài 1: Cho hình bình hành ABCD có BC = 2AB, Â =60 0 . gọi E, F theo thứ tự là trung điểm của BC,
AD. Gọi I là điểm đối xứng với A qua B.
a) Tứ giác ABEF là hình gì? Vì sao?
b) Tứ giác AIEF là hình gì? Vì sao?
c) Tứ giác BICD là hình gì? Vì sao?
d) Tính số đo góc AED.
Bài 2: Cho hình thang ABCD(AB // CD). Gọi E, F theo thứ tự là trung điểm của AB, CD. Gọi O là
trung điểm của EF. Qua O kẻ đường thẳng song song với AB, cắt AD và BC theo thứ tự ở M và N.
a) Tứ giác EMFN là hình gì? Vì sao?
b) Hình thang ABCD có thêm điều kiện gì thì EMFN là hình thoi?
c) Hình thang ABCD có thêm điều kiện gì thì EMFN là hình vuông?
Help me
Bài 1:
a: Xét tứ giác ABEF có
BE//AF
BE=AF
BE=BA
Do đó: ABEF là hình thoi
b: Xét ΔBIE có BI=BE
nên ΔBIE cân tại B
mà góc IBE=60 độ
nên ΔBIE đều
=>góc I=60 độ
Xét tứ giác AFEI có
EF//AI
góc I=góc A
Do đó AFEI là hình thang cân
c: Xét ΔBAD có
BF là đường trung tuyến
BF=AD/2
Do đó: ΔBAD vuông tại B
=>DB vuông góc với BI
Xét tứ giác BICD có
BI//CD
BI=CD
Do đó: BICD là hình bình hành
mà DB vuông góc với BI
nên BICD là hình chữ nhật
d: Xét ΔAED có
EF la trung tuyến
FE=DA/2
Do đó: ΔAED vuông tại E
=>góc AED=90 độ
bài 1: Cho hình thang ABCD (AB//CD).Gọi E là trung điểm của AB,F là trung điểm của CD,O là trung điểm của EF.Qua O kẻ đường thẳng song song với CD,cắt AD và BC theo thứ tự ở M và N.
a) chứng minh rằng M là trung điểm của AD,N là trung điểm của BC
b)chứng minh rằng OM=ON
c) Tứ giác EMFN là hình gì?
a: Xét hình thang AEFD có
O là trung điểm của EF
OM//AE//DF
Do đó: M là trung điểm của AD
Xét hình thang BEFC có
O là trung điểm của FE
ON//EB//FC
Do đó: N là trung điểm của BC
Cho hình thang ABCD (AB//CD). gỌI E , F theo thứ tự là trung điểm AB , CĐ . gỌI O là trung điểm EF. Qua O kẻ đường thẳng song song với AB cắt AD và BC theo thứ tự tại M,N
a) Tứ giác EMFN là hình gì DS : EMFN là hình bình hành
b) Hình thang ABCD có thêm điều kiện để EMFN là hình thoi DS : ABCD là hình thang cân
c)Hình thang ABCD có thêm điều kiện gì để EMFN là hình vuông DS ABCD là hình thang cân và có 2 đường chéo vuông góc
a) XÉT HÌNH THANG AEDF(AE//DF) O LÀ TRUNG ĐIỂM EF, OM//DF=> M PHẢI LÀ TĐ CỦA AD
TƯƠNG TỰ C/M N LÀ TĐ BC
ĐẾN ĐÂY LÀM GIỐNG BÀI HÔM TRC ĐÓ E. KẺ 2 ĐƯỜNG CHÉO AC,DB
TAM GIÁC ADB: E,M LÀ TRUNG ĐIỂM 2 CẠNH BÊN => EM LÀ ĐTB => EM//DB. TƯƠNG TỰ VỚI TAM GIÁC DBC:... => FN//DB
=> EM//FN.
TƯƠNG TỰ C/M: EN//MF => TỨ GIÁC EMFN LÀ HÌNH BÌNH HÀNH
B) EMFN LÀ HÌNH THOI <=> EM=EN. MÀ EM=1/2 DB; EN=1/2 AC => AC=DB => HÌNH THANG ABCD CÂN
C) EMFN LÀ HÌNH VUÔNG <=> EMFN LÀ HÌNH THOI (ĐK CÂU B) VÀ EM VUÔNG GÓC EN TẠI E. MÀ EM//DB, EN//AC => DB VUÔNG GÓC AC
=> ABCD là hình thang cân và có 2 đường chéo vuông góc
123 + 345 = 468
468 + 567 = 1035
1035 - 236 = 799
799 - 189 = 610
610 + 853 = 1463
Cho hình thang : ABCD (AB// CD). Gọi E, F theo thứ tự là trung điểm của AB, CD. Gọi O lad trung điểm của EF, Qua O vẽ đường thẳng song song với AB, cắt AD,; BC theo thứ tự M và N
a) tứ giác EMFN là hình gì
b) hình thang: ABCD có thêm điều kiện gì để EMFN là hình thoi
c) hình thang: ABCD có thêm điều kiện gì để EMFN là hình vuông
Vẽ hình nx nha
giúp tui ik
a) Ta có: AB//CD(gt)
mà E∈AB và F∈CD
nên AE//DF và EB//FC
Xét tứ giác AEFD có AE//DF(cmt)
nên AEFD là hình thang có hai đáy là AE và DF(Định nghĩa hình thang)
Hình thang AEFD(AE//DF) có
O là trung điểm của EF(gt)
OM//AE//DF(MN//AB//DC, E∈AB, O∈MN, F∈DC)
Do đó: M là trung điểm của AD(Định lí 3 về đường trung bình của hình thang)
Xét tứ giác BEFC có BE//FC(cmt)
nên BEFC là hình thang có hai đáy là BE và FC(Định nghĩa hình thang)
Hình thang BEFC(BE//FC) có
O là trung điểm của EF(gt)
ON//EB//FC(MN//AB//DC, E∈AB, O∈MN, F∈CD)
Do đó: N là trung điểm của BC(Định lí 3 về đường trung bình của hình thang)
Xét ΔABD có
M là trung điểm của AD(cmt)
E là trung điểm của AB(gt)
Do đó: ME là đường trung bình của ΔABD(Định nghĩa đường trung bình của tam giác)
⇒ME//BD và NF=BD2NF=BD2(Định lí 2 về đường trung bình của tam giác)(2)
Từ (1) và (2) suy ra ME//NF và ME=NF
Xét tứ giác EMFN có ME//NF(cmt) và ME=NF(cmt)
nên EMFN là hình bình hành(Dấu hiệu nhận biết hình bình hành)
b) Xét ΔBAC có
E là trung điểm của AB(gt)
N là trung điểm của BC(cmt)
Do đó: EN là đường trung bình của ΔBAC(Định nghĩa đường trung bình của tam giác)
⇒EN//AC và EM=BD2EM=BD2(cmt) và