Viết phương trình mặt phẳng đi qua điểm P(4;0;-2),Q(5;1;7) và song song với trục Ox
Hãy viết phương trình mặt phẳng (α) đi qua điểm M(2; -1; 2) và song song với mặt phẳng (β) : 2x – y + 3z + 4 = 0
Vì mặt phẳng (α) song song với mặt phẳng ( β) : 2x – y + 3z + 4 = 0 nên phương trình của mp(α) có dạng 2x – y + 3z + D = 0
Vì M(2; -1; 2) ∈ mp(α) nên 4 + 1 + 6 + D = 0 <=> D = -11
Vậy phương trình của mp(α) là: 2x – y + 3z - 11= 0
Viết phương trình của mặt phẳng ( β ) đi qua điểm M(2; -1; 2), song song với trục Oy và vuông góc với mặt phẳng ( α ): 2x – y + 3z + 4 = 0
Mặt phẳng ( β ) song song với trục Oy và vuông góc với mặt phẳng ( α ):
2x – y + 3z + 4 = 0, do đó hai vecto có giá song song hoặc nằm trên ( β ) là: j → = (0; 1; 0) và n α → = (2; −1; 3)
Suy ra ( β ) có vecto pháp tuyến là n β → = j → ∧ n α → = (3; 0; −2)
Mặt phẳng ( β ) đi qua điểm M(2; -1; 2) có vecto pháp tuyến là: n β → = (3; 0; −2)
Vậy phương trình của ( β ) là: 3(x – 2) – 2(z – 2) = 0 hay 3x – 2z – 2 = 0
Viết phương trình mặt phẳng:
Đi qua điểm M(1; -2; 4) và nhận n → = (2 ; 3 ; 5) làm vec tơ pháp tuyến
Mặt phẳng đi qua điểm M(1; -2; 4) và nhận n → = (2; 3; 5) làm vectơ pháp tuyến là:
2(x – 1) + 3(y + 2) + 5(z – 4) = 0
⇔ 2x + 3y + 5z – 16 = 0.
viết phương trình mặt phẳng đi qua điểm N(-3;1;2) và chứa trục Oz
Viết phương trình mặt phẳng (P) đi qua ba điểm A 1 ; 0 ; 0 , B 0 ; - 2 ; 0 và C(0;0;4)
Cho điểm A(2; 3; 4). Hãy viết phương trình của mặt phẳng ( α ) đi qua các hình chiếu của điểm A trên các trục tọa độ.
Hình chiếu của điểm A(2; 3; 4) lên các trục Ox, Oy, Oz lần lượt là B(2; 0; 0), C(0; 3; 0), D(0; 0 ; 4). Mặt phẳng ( α ) đi qua ba điểm B, C, D nên
( α ) có phương trình theo đoạn chắn là:
hay 6x + 4y + 3z – 12 = 0
Trong không gian Oxyz, viết phương trình mặt phẳng (P) đi qua điểm M(0;1;3) và song song với mặt phẳng ( Q ) : 2 x - 3 z + 1 = 0 .
A. 2x - 3z - 10 = 0
B. 2x + 3z – 9 = 0
C. 2x - 3z + 9 = 0
D. 2x + 3z + 1 = 0
Chọn C.
Mặt phẳng (P) song song với mặt phẳng (Q):2x - 3z + 1 = 0 nên mặt phẳng (P) có phương trình dạng: 2x - 3z + D = 0 (D ≠ 1).
Mặt phẳng (P) đi qua điểm M nên thay tọa độ điểm vào phương trình mặt phẳng (P) ta được:
2.0 - 3.3 + D = 0 ⇔ D = 9 (thỏa mãn D ≠ 1).
Vậy phương trình mặt phẳng (P) là: 2x - 3z + 9 = 0.
Viết phương trình mặt phẳng (Q) đi qua hai điểm O(0;0;0), A(3;0;1) và vuông góc với mặt phẳng ( P ) : x + 2 y - 2 z + 5 = 0
A. 2x-7y-6z=0
B. 3x+4y-6z=0
C. 2x-7y+6z+1=0
D. x+y+z-4=0
Chọn A
Mặt phẳng (Q) qua điểm O và nhận vectơ pháp tuyến là tích có hướng của vecto OA và vecto pháp tuyến của mặt phẳng (P)
Trong không gian Oxyz, viết phương trình mặt phẳng (P) đi qua điểm M ( 0 ; 1 ; 3 ) và song song với mặt phẳng ( Q ) : 2 x – 3 z + 1 = 0 .
A. 2x - 3z + 2 = 0
B. 2x- 3z + 9 = 0
C. 2x + 3z – 9 = 0
D. Đáp án khác
Chọn B
Mặt phẳng (P) song song với mặt phẳng (Q): 2x – 3z + 1 = 0 nên mặt phẳng (P) có phương trình dạng: .
Mặt phẳng (P) đi qua điểm M(0;1;3) nên thay tọa độ điểm vào phương trình mặt phẳng (P) Ta được: 2.0 -3.3 + D = 0 ⇔ D = 9 (thỏa mãn D ≠ 1).
Vậy phương trình mặt phẳng (P) là: 2x – 3z + 9 = 0.
Viết phương trình mặt phẳng (Q) đi qua hai điểm O(0;0;0), A(3;0;1) và vuông góc với mặt phẳng (P): x+2y-2z+5=0