Cho A=2016^2016+2/2016^2016-1 và B=2016^2016/2016^2016-3
Cho : A=2016 mũ 2016 + 2 / 2016 mũ 2016 -1 và B= 2016 mũ 2016 / 2016 mũ 2016 -3. So sánh A và B
Cho A= 20162016+2/20162016-1 và B= 20162016/20162016-3
so sánh A và B
Ta có :
\(A=\frac{2016^{2016}+2}{2016^{2016}-1}=\frac{2016^{2016}-1+3}{2016^{2016}-1}=1+\frac{3}{2016^{2016}-1}\)
\(B=\frac{2016^{2016}}{2016^{2016}-3}=\frac{2016^{2016}-3+3}{2016^{2016}-3}=1+\frac{3}{2016^{2016}-3}\)
Do \(\frac{3}{2016^{2016}-1}< \frac{3}{2016^{2016}-3}\)
\(\Rightarrow1+\frac{3}{2016^{2016}-1}< 1+\frac{3}{2016^{2016}-3}\)
\(\Rightarrow A< B\)
Vậy \(A< B\)
Chúc bạn học tốt !!!
So Sánh A=2016^2016+2/2016^2016-1 và B=2016^2016/2016^2016-3
Cho \(A=\frac{2016^{2016}+2}{2016^{2016}-1}\)và \(B=\frac{2016^{2016}}{2016^{2016}-3}\)
So sánh A và B
\(A=\frac{2016^{2016}-1+3}{2016^{2016}-1};B=\frac{2016^{2016}-3+3}{2016^{2016}-3}\)
\(A=\frac{2016^{2016}-1}{2016^{2016}-1}+\frac{3}{2016^{2016}-1};B=\frac{2016^{2016}-3}{2016^{2016}-3}+\frac{3}{2016^{2016}-3}\)
\(A=1+\frac{3}{2016^{2016}-1};B=1+\frac{3}{2016^{2016}-3}\)
Vì \(\frac{3}{2016^{2016}-1}< \frac{3}{2016^{2016}-3}\)
\(\Rightarrow1+\frac{3}{2016^{2016}-1}< 1+\frac{3}{2016^{2016}-3}\)
\(\Rightarrow A< B\)
\(A=\frac{2016^{2016}+2}{2016^{2016}-1}=\frac{2016^{2016}-1+3}{2016^{2016}-1}=1+\frac{3}{2016^{2016}-1}\)
\(B=\frac{2016^{2016}}{2016^{2016}-3}=\frac{2016^{2016}-3+3}{2016^{2016}-3}=1+\frac{3}{2016^{2016}-3}\)
Do \(\frac{3}{2016^{2016}-1}>\frac{3}{2016^{2016}-3}\)
\(\Rightarrow1+\frac{3}{2016^{2016}-1}>1+\frac{3}{2016^{2016}-3}\)
\(\Rightarrow A>B\)
Vậy \(A>B\)
Chúc bạn học tốt !!!
Bạn Hỏa Long natsu ơi mình nghĩ khái niệm về phân số của bạn sai rồi . Đểm mình ví dụ nha \(\frac{3}{5-1}với\frac{3}{5-3}\)số nào lớn hơn thì bạn cũng biết rùi nhỉ . PICK cho mình nha
cho A=20162016+2/20162016-1
B= 20162016/20162016-3.
Hãy so sánh A và B
\(A=\frac{2016^{2016}+2}{2016^{2016}-1}=\frac{2016^{2016}-1+3}{2016^{2016}-1}=\frac{2016^{2016}-1}{2016^{2016}-1}+\frac{3}{2016^{2016}-1}=1+\frac{3}{2016^{2016}-1}\)
\(B=\frac{2016^{2016}}{2016^{2016}-3}=\frac{2016^{2016}-3+3}{2016^{2016}-3}=\frac{2016^{2016}-3}{2016^{2016}-3}+\frac{3}{2016^{2016}-3}=1+\frac{3}{2016^{2016}-3}\)
Vì \(1=1;\frac{3}{2016^{2016}-1}<\frac{3}{2016^{2016}-3}\)nên \(1+\frac{3}{2016^{2016}-1}<1+\frac{3}{2016^{2016}-3}\)
\(=>\)\(A\)\(<\)\(B\)
Cho A= 20162016+2/20162016-1 và B= 20162016/20162016-3
so sánh A và B
Giải thích ra giúp em
A= (2016^2016+2)/(2016^2016-1)=(2016^2016-1+3)/(2016^2016-1)=(2016^2016-1)/2016^2016-1)+(3/2016^2016-1)=1+(3/2016^2016-1) B=( 2016^2016)/(2016^2016-3)=(2016^2016-3+3)/(2016^2016-3)=(2016^2016-3)/(2016^2016-3) +(3/2016^2016-3)=1+(3/2016^2016-3) Vì 3/(2016^2016-1)<3/(2016^2016-3) Nên A<B
A= 20162016 +2/20162016-1 và B=20162016/20162016-3
\(A=\frac{2016^{2016}+2}{2016^{2016}-1}=\frac{2016^{2016}-1+3}{2016^{2016}-1}=\frac{2016^{2016}-1}{2016^{2016}-1}+\frac{3}{2016^{2016}-1}=1+\frac{3}{2016^{2016}-1}\)
\(B=\frac{2016^{2016}}{2016^{2016}-3}=\frac{2016^{2016}-3+3}{2016^{2016}-3}=\frac{2016^{2016}-3}{2016^{2016}-3}+\frac{3}{2016^{2016}-3}=1+\frac{3}{2016^{2016}-3}\)
ta thấy:20162016-1>20162016-3
=>\(\frac{3}{2016^{2016}-1}<\frac{3}{2016^{2016}-3}\)
=>\(1+\frac{3}{2016^{2016}-1}<1+\frac{3}{2016^{2016}-3}\)
=>A<B
A = 20162016 + 2/20162016-1 = 20162016 - 1 + 3/20162016 - 1
= 20162016 - 1/20162016 - 1 + 3/20162016 - 1
= 1 + 3/20162016 - 1 (không biết ghi hỗn số)
B = 20162016/20162016 -3 = 20162016 - 3 + 3/20162016 - 3
= 20162016 - 3/20162016 - 3 + 3/20162016 - 3
= 1 + 3/20162016 - 3
So sánh : 1 + 3/20162016 - 1 và 1 + 3/20162016 - 3
Ta có : 1 + 3/20162016 - 1 < 1 + 3/20162016 - 3
=> A < B
Cho:\(A=\frac{2016^{2016}+2}{2016^{2016}-1}\)và\(B=\frac{2016^{2016}}{2016^{2016}-3}\). Hãy so sánh A và B . Help me. Trình bày rõ ràng giúp mik nha
Ta có :
\(A=\frac{2016^{2016}+2}{2016^{2016}-1}=\frac{\left(2016^{2016}-1\right)+3}{2016^{2016}-1}=1+\frac{3}{2016^{2016}-1}\)
\(B=\frac{2016^{2016}}{2016^{2016}-3}=\frac{\left(2016^{2016}-3\right)+3}{2016^{2016}-3}=1+\frac{3}{2016^{2016}-3}\)
Vì \(2016^{2016}-1>2016^{2016}-3\) nên \(\frac{3}{2016^{2016}-1}< \frac{3}{2016^{2016}-3}\)
\(\Rightarrow1+\frac{3}{2016^{2016}-1}< 1+\frac{3}{2016^{2016}-3}\)
\(\Rightarrow A< B\)
So sánh A và B \(choA=\frac{2016^{2016}+2}{2016^{2016}-1};B=\frac{2016^{2016}}{2016^{2016}-3}\)
\(A=\frac{2016^{2016}+2}{2016^{2016}-1};;B=\frac{2016^{2016}}{2016^{2016}-3}\)\(A=\frac{\left(2016^{2016}-1\right)+2+1}{2016^{2016}-1};;B=\frac{\left(2016^{2016}-3\right)+3}{2016^{2016}-3}\)\(A=1+\frac{3}{2016^{2016}-1};;B=1+\frac{3}{2016^{2016}-3}\);;Vì \(2016^{2016}-1>2016^{2016}-3\)Nên\(\frac{3}{2016^{2016}-1}< \frac{3}{2016^{2016}-3}\)Vậy \(A< B\)