Giải hộ mình với, mình cần gấp:
Chứng minh rằng: 3n + 4 và 5n + 7 là 2 số nguyên số cùng nhau
chứng minh:5n+7 và 3n+4 là hai số nguyên tố cùng nhau.
mình đang cần gấp ạ
mình cẩm ơn trước
Gọi UWCLN (5n+7;3n+4)=d(dϵN*)
=>(5n+7)⋮d=>3(5n+7)⋮d=>(15n+21)⋮d
=>(3n+4)⋮d=>5(3n+4)⋮d=>(15n+20)⋮d
=>[(25n+21)-(15n+20)]⋮d
=>1⋮d mà dϵN*=>d=1
=>UCLN(5n+7;3n+4)=1
vậy 5n+7 và 3n+4 là 2 số nguyên tố cùng nhau
Chúc bạn học zỏi
Tìm số tự nhiên n nhỏ nhất có 4 chữ số biết rằng:3n+5 và 5n+4 không là hai số nguyên tố cùng nhau
nhanh giải hộ mình nha ,ai giải đúng mình tick
thứ 6 mình phải nộp
Chứng minh rằng với mọi số tự nhiên n thì 2n+3 và 3n+4 là 2 số nguyên tố cùng nhau!
Giải hộ mình nha ^O^, ai đúng mk tick cho nhé!^_^
Gọi ƯCLN của 2n+3 và 3n+4 là d ( d thuộc N sao )
=> 2n+3 và 3n+4 đều chia hết cho d
=> 3.(2n+3) và 2.(3n+4) đều chia hết cho d
=> 6n+9 và 6n+8 đều chia hết cho d
=> 6n+9-(6n+8) chia hết cho d hay 1 chia hết cho d
=> d = 1 ( vì d thuộc N sao )
=> ƯCLN của 2n+3 và 3n+4 là 1
=> 2n+3 và 3n+4 là 2 số nguyên tố cùng nhau
k mk nha
thank bn, nhớ ủng hộ mk những câu hỏi sau nha.....>_<
ƯCLN(2n+3,3n+4)
=>UCLN(2n+3,n+1)
=>UCLN(n+1,n+2)
=1
Vì 2n+3 ko chia hết cho 2 vì 3 ko chia hết cho 2
=>2n+3 và 3n+4 là 2 số nguyên tố cùng nhau.
Chứng minh rằng 2n+1 và 3n+1 là 2 số nguyên tố cùng nhau
Giải hộ mình nha+-+
Gọi a là ước chung của ( 2n+1 ) và ( 3n +1)
Suy ra ( 2n+1 ) chia hết cho a và ( 3n +1) chia hết cho a
3. ( 2n+1 )-2. ( 3n +1) chia hết cho a
Hay 1 chia hết cho a suy ra a=1. Vậy ƯCLN của 2 số đó =1
Ta có :
gọi k là UCLN của 2n+1 và 3n+1
=> 3(2n+1) \(⋮k\)
=> 2(3n+1)\(⋮k\)
=> 3(2n+1)-2(3n+1)\(⋮k\)
=> 1\(⋮k\)
Vì k >o
=> k=1
=> đpcm
Gọi d \(\in\)ƯCLN (2n + 1 ; 3n + 1)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+3⋮d\\6n+2⋮d\end{cases}}}\)
\(\Rightarrow\left(6n+3\right)-\left(6n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy 2n+1 và 3n+1 là 2 số nguyên tố cùng nhau
Chứng minh rằng:
a, 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (n thuộc N )
b, 5n + 7 và 3n + 4 là 2 số nguyên tố cùng nhau (n thuộc N )
a) Gọi d = ƯCLN(2n+5; 3n+7) (d thuộc N*)
=> 2n + 5 chia hết cho d; 3n + 7 chia hết cho d
=> 3.(2n + 5) chia hết cho d; 2.(3n + 7) chia hết cho d
=> 6n + 15 chia hết cho d; 6n + 14 chia hết cho d
=> (6n + 15) - (6n + 14) chia hết cho d
=> 6n + 15 - 6n - 14 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(2n+5; 3n+7) = 1
=> 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (đpcm)
Câu b lm tương tự
Gọi d = ƯCLN(2n+5; 3n+7) (d thuộc N*)
=> 2n + 5 chia hết cho d; 3n + 7 chia hết cho d
=> 3.(2n + 5) chia hết cho d; 2.(3n + 7) chia hết cho d
=> 6n + 15 chia hết cho d; 6n + 14 chia hết cho d
=> (6n + 15) - (6n + 14) chia hết cho d
=> 6n + 15 - 6n - 14 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(2n+5; 3n+7) = 1
=> 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (đpcm)
Câu b lm tương tự
Gọi d = ƯCLN(2n+5; 3n+7) (d thuộc N*)
=> 2n + 5 chia hết cho d; 3n + 7 chia hết cho d
=> 3.(2n + 5) chia hết cho d; 2.(3n + 7) chia hết cho d
=> 6n + 15 chia hết cho d; 6n + 14 chia hết cho d
=> (6n + 15) - (6n + 14) chia hết cho d
=> 6n + 15 - 6n - 14 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(2n+5; 3n+7) = 1
=> 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (đpcm)
Câu b lm tương tự
Chứng minh rằng:2n+5 và 3n+7 là hai số nguyên tố cùng nhau
MÌnh đang cần gấp . Bạn nào có lời giải mình tick cho
mk lấy ví dụ n =1; 2n+5 = 2x1+5= 7; 3n+7=3x1+7 = 10;
ƯCLN (7;10) = 1
Bài giải :
Gọi d là ƯCLN(2n + 5 ; 3n + 7)
Ta có : 2n + 5 = 3(2n + 5 ) = 6n + 15 và 3n + 7 = 2(3n + 7 ) = 6n + 14
Suy ra ( 6n + 15 ) - ( 6n + 14 ) chia hết cho d
( 6n - 6n ) + ( 15 - 14 ) chia hết cho d
1 chia hết cho d => d = 1
Kết luận UCLN( 2n + 5 ; 3n + 7) = 1
Vậy 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau
Bài 4: Chứng tỏ rằng các số sau là 2 số nguyên tố cùng nhau với n e N:
a, n + 1 và 3n + 4
b. 7n + 10 và 5n + 7
c, 14n + 3 và 21n + 4
giúp mình với
a: Gọi d là ước chung lớn nhất của 3n+4 và n+1
=>\(\left\{{}\begin{matrix}3n+4⋮d\\n+1⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3n+4⋮d\\3n+3⋮d\end{matrix}\right.\)
=>\(3n+4-3n-3⋮d\)
=>\(1⋮d\)
=>d=1
=>n+1 và 3n+4 là hai số nguyên tố cùng nhau
b: Gọi d là ước chung lớn nhất của 7n+10 và 5n+7
=>\(\left\{{}\begin{matrix}7n+10⋮d\\5n+7⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}35n+50⋮d\\35n+49⋮d\end{matrix}\right.\)
=>\(35n+50-35n-49⋮d\)
=>\(1⋮d\)
=>d=1
=>7n+10 và 5n+7 là hai số nguyên tố cùng nhau
c: Gọi d là ước chung lớn nhất của 14n+3 và 21n+4
=>\(\left\{{}\begin{matrix}14n+3⋮d\\21n+4⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}42n+9⋮d\\42n+8⋮d\end{matrix}\right.\)
=>\(42n+9-42n-8⋮d\)
=>\(1⋮d\)
=>d=1
=>14n+3 và 21n+4 là hai số nguyên tố cùng nhau
chứng minh rằng với mọi số tự nhiên n khác 0 thì 2n+5 và 3n+7 là hai số nguyên tố cùng nhau
Mình cần câu trả lời gấp !
Mong mọi người ủng hộ ^_^
Chứng minh rằng mọi số n thuoccj N tì 5n + 3 và 3n + 2 là 2 số nguyên tố cùng nhau
Giúp mình nha
ai nhanh mình tik 3 cái nha
Gọi d là ƯCLN(5n+3;3n+2)
=> 5n+3 chia hết cho d
=> 3n+2 chia hết cho d
=> 3(5n+3)-5(3n+2) chia hết cho d
=> 1 chia hết cho d
=> d E {-1;1}
Vậy: 5n+3 và 3n+2 luôn nguyên tố cùng nhau (ĐPCM)