Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyen Thi Khanh Linh
Xem chi tiết
Công Chúa Huyền Trang
Xem chi tiết
shitbo
18 tháng 11 2020 lúc 20:37

\(n^2+n+1=n^2+n+1=n\left(n+1\right)+1\text{ mà }n\left(n+1\right)⋮2\)

nên n(n+1)+1 lẻ nên ko chia hết cho 4

\(\text{Ta chứng minh: }n^2+n\text{ ko chia 5 dư 4};n\text{ chia 5 dư 0 thì đúng ; 1 cx đúng;...}\)

nên n^2+n+1 ko chia 5 dư 4+1=5 hay 0 nên

có đpcm

Khách vãng lai đã xóa
Minlee
Xem chi tiết
Đinh Tuấn Việt
27 tháng 7 2015 lúc 15:45

Ta có n2 + n = n.(n + 1) là tích của hai số tự nhiên liên tiếp nên có tận cùng là 0; 2; 6.

Do đó n2 + n + 1 có tận cùng là 1; 3; 7.

- chữ số tận cùng là số lẻ => không chia hết cho 4.

- chữ số tận cùng khác 0 hoặc 5 => không chia hết cho 5.

Vậy  n2 + n + 1 không chia hết cho 4 và không chia hết cho 5

❊ Linh ♁ Cute ღ
31 tháng 12 2018 lúc 20:45

Giả sử như mệnh đề trên đúng : 
n^2+1 chia hết cho 4 
* Nếu n chẵn : n = 2k , k thuộc N 
=> n^2 +1 = 4k^2 +1 k chia hết cho 4 
* nếu n lẻ : n = 2k + 1 
=> n^2 +1 = 4k^2 +4k +2 
=> n^2 +1 = 4k(k+1)+2 
k , k +1 là 2 số tự nhiên liên tiếp 
=> k(k+1) chia hết cho 2 
=> 4k(k+1)chia hết cho 4 
=> 4k(k+1)+2 chia cho 4 , dư 2 
=> 4k (k+1)+2 k chia hết cho 4

Hoàng Thị Hải Yến
Xem chi tiết
Lê Hồng Ngọc
Xem chi tiết
Tín Đinh
Xem chi tiết
Chú Tiểu
3 tháng 9 2014 lúc 10:50

n2+n+1 = n(n + 1) +1.

Vì n(n+1) là tích của hai số tự nhiên liên tiếp nên có chữ số tận cùng là 0, 2, 6

Do đó n(n+1) + 1 có chữ số tận cùng là 1, 3, 7. 

Vì 1, 3, 7 không chia hết cho 2 và 5 nên n(n+1) + 1 không chia hết cho 2 và 5

Vậy n2+n+1 không chia hết cho 2 và 5.

GV
4 tháng 9 2014 lúc 7:42

Chú Tiểu làm đúng rồi. Mình giải thích thêm để bạn Tín Đinh hiểu rõ hơn.

n2 + n + 1 = n.(n+1) + 1.

Vì n.(n+1) là tích hai số tự nhiên liên tiếp, trong 2 số liên tiếp luôn luôn có 1 số chẵn => n.(n+1) là số chẵn, cộng thêm 1 sẽ là số lẻ => n.(n+1) + 1 là số lẻ, không chia hết cho 2.

Để chứng minh n.(n+1) + 1 không chia hết cho 5 ta thấy hai số n và n+1 có thể có các chữ số tận cùng sau:

    n   tận cùng là 0, 1, 2, 3, 4, 5, 6, 7, 8, 9; tương ứng số tận cùng của n+ 1 như sau:

n+ 1 tận cùng là 1, 2, 3, 4, 5, 6, 7, 8, 9, 0

=> tích của n.(n+1) tận cùng là:

                              0, 2, 6, 2, 0, 0, 2, 6, 2, 0

Hay là n.(n+1) tận cùng là 0, 2, 6

=> n.(n+1) +1 tận cùng là: 1, 3, 7  không chia hết cho 5

Tín Đinh
3 tháng 9 2014 lúc 20:11

em cũng chưa hiểu rõ lắm !

Hoàng Tùng :v
Xem chi tiết
Lê văn vinh
Xem chi tiết
❊ Linh ♁ Cute ღ
31 tháng 12 2018 lúc 20:45

Giả sử như mệnh đề trên đúng : 
n^2+1 chia hết cho 4 
* Nếu n chẵn : n = 2k , k thuộc N 
=> n^2 +1 = 4k^2 +1 k chia hết cho 4 
* nếu n lẻ : n = 2k + 1 
=> n^2 +1 = 4k^2 +4k +2 
=> n^2 +1 = 4k(k+1)+2 
k , k +1 là 2 số tự nhiên liên tiếp 
=> k(k+1) chia hết cho 2 
=> 4k(k+1)chia hết cho 4 
=> 4k(k+1)+2 chia cho 4 , dư 2 
=> 4k (k+1)+2 k chia hết cho 4

thao pham
Xem chi tiết
❊ Linh ♁ Cute ღ
31 tháng 12 2018 lúc 20:46

Giả sử như mệnh đề trên đúng : 
n^2+1 chia hết cho 4 
* Nếu n chẵn : n = 2k , k thuộc N 
=> n^2 +1 = 4k^2 +1 k chia hết cho 4 
* nếu n lẻ : n = 2k + 1 
=> n^2 +1 = 4k^2 +4k +2 
=> n^2 +1 = 4k(k+1)+2 
k , k +1 là 2 số tự nhiên liên tiếp 
=> k(k+1) chia hết cho 2 
=> 4k(k+1)chia hết cho 4 
=> 4k(k+1)+2 chia cho 4 , dư 2 
=> 4k (k+1)+2 k chia hết cho 4