cho a+b+c=2015.Tính M=(a+b+c)(1/a+1/b+1/c)-abc(1/a^2+1/b^+1/c^2)
cho a,b,c biết a+b+c=6 và (a-1)^3+(b-2)^3+(c-3)^3=0 tính (a-1)^2015+(b-2)^2015+(c-3)^2015
\(\text{Ta có:}\)
\(\left(a-1\right)^3+\left(b-2\right)^3+\left(c-3\right)^3=\)
\(\left(a-1\right)^3+\left(b-2\right)^3+\left(c-3\right)^3-3\left(a-1\right)\left(b-2\right)\left(c-3\right)+3\left(a-1\right)\left(b-2\right)\left(c-3\right)=0\)
\(\Leftrightarrow\left(a+b+c-6\right)\left(....\right)+3\left(a-1\right)\left(b-2\right)\left(c-3\right)=0\)
\(\Leftrightarrow a=1\text{ hoặc }b=2\text{ hoặc }c=3\)
còn lại ko tính đc bạn ktra lại đề
mk nhầm , chiều mk lm tiếp
Ta có \(\left(a-1\right)+\left(b-2\right)+\left(c-3\right)=6-6=0\)
\(\Rightarrow\left(a-1\right)^3+\left(b-2\right)^3+\left(c-3\right)^3=3\left(a-1\right)\left(b-2\right)\left(c-3\right)=0\)
<=> a=1 hoặc b=2 hoặc c=3
Xét a=1 => b+c=5
Ta có : \(\left(a-1\right)^{2015}+\left(b-2\right)^{2015}+\left(c-3\right)^{2015}=0+\left(b+c-5\right).A=0\)
Tương tự với b=2,c=3 ta cũng được \(\left(a-1\right)^{2015}+\left(b-2\right)^{2015}+\left(c-3\right)^{2015}=0\)
\(\)
cho a,b,c là 2 số thực dương thỏa mãn 1/a +1/b +1/c = 1/ (a+b+c)
chứng minh 1/a^2015 +1/b^2015 + 1/c^2015 = 1/ (a^2015 + b^2015 + c^2015)
a/ Cho abc khác 0 và a+b+c=1/a+1/b+1/c. C/m b(a^2-bc)(1-ac)=a(1-bc)(b^2-ac)
b/ Cho abc khác 0 và (a+b+c)2 = a2+b2+c2. C/m 1/a3 +1/b3 +1/c3 =
3/abc
Cập nhật: a/ Cho abc khác 0 và a+b+c=1/a+1/b+1/c. C/m b(a^2-bc)(1-ac)=a(1-bc)(b^2-ac)
b/ Cho abc khác 0 và (a+b+c)2 = a2+b2+c2. C/m 1/a^3 +1/b^3 +1/c^3 =
3/abc
cho a,b,c là 2 số thực dương thỏa mãn 1/a +1/b +1/c = 1/ (a+b+c)
chứng minh 1/a^2015 +1/b^2015 + 1/c^2015 = 1/ (a^2015 + b^2015 + c^2015)
Cho a,b,c >0 thỏa mãn (b+c/a^2)+(a+c/b^2)+(a+b/c^2)=2(1/a+1/b+1/c)
Tính P=(a-b)^2015+(b-c)^2016+(c-a)^2017
1)Cho a,b,c là các số thực thỏa mãn: a+b+c=2015 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2015}\).Tính \(\frac{1}{a^{2015}}+\frac{1}{b^{2015}}+\frac{1}{c^{2015}}\)
2)Cho n là số dương.Chứng minh:
T= \(2^{3n+1}-2^{3n-1}+1\) là hợp số.
3)Cho a,b,c là ba số dương và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\).Tìm Max A=\(\frac{1}{\sqrt{a^2-ab+b^2}}+\frac{1}{\sqrt{b^2-bc+c^2}}+\frac{1}{\sqrt{c^2-ac+a^2}}\)
cho 1/a + 1/b + 1/c = 1/(a+b+c)
c/m : 1/(a^2015) + 1/(b^2015) + 1/(c^2015) = 1/(a^2015 + 1/b^2015 +1/c^2015).
^ la so mu nha....
Cho a+b+c=1
Tính M =(2015/ab+a+1)+(2015/bc+b+1)+(2015/ac+c+1)
Cho a+b+c = 2013. Tính:
M = (ab+bc+ac).(1/a+1/b+1/c) - abc.(1/a^2 + 1/b^2 + 1/c^2)
Ta có M=\(\left(ab+bc+ca\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-abc\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)
=\(2\left(a+b+c\right)+\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}-\frac{ab}{c}-\frac{bc}{a}-\frac{ca}{b}=2\left(a+b+c\right)=4026\)
^_^