cho a+b+c=2015.
Tính M=(a+b+c)(1/a+1/b+1/c)-abc(1/a^2+1/b^+1/c^2)
.
cho a+b+c=2015.
Tính M=(a+b+c)(1/a+1/b+1/c)-abc(1/a^2+1/b^+1/c^2)
.
Cho a,b,c >0 thỏa mãn (b+c/a^2)+(a+c/b^2)+(a+b/c^2)=2(1/a+1/b+1/c)
Tính P=(a-b)^2015+(b-c)^2016+(c-a)^2017
cho 1/a + 1/b + 1/c = 1/(a+b+c)
c/m : 1/(a^2015) + 1/(b^2015) + 1/(c^2015) = 1/(a^2015 + 1/b^2015 +1/c^2015).
^ la so mu nha....
Cho a+b+c=1
Tính M =(2015/ab+a+1)+(2015/bc+b+1)+(2015/ac+c+1)
Cho a+b+c = 2013. Tính:
M = (ab+bc+ac).(1/a+1/b+1/c) - abc.(1/a^2 + 1/b^2 + 1/c^2)
5, cho a+b+c=abc
1/a^2+1/b^2+1/c^2=2
tính M=1/a+1/b+1/c
Bài1:Cho a+b=1.Tính \(A=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2.\left(a+b\right)\)
Bài 2: Cho a,b,c thuộc R t/m: ab+bc+ca=abc và a+b+c=1.CMR:(a-1)(b-1)(c-1)=0
Bài 3: Cho x-y=12.Tính A=x^3-y^3-36xy
Bài 4: Rút gọn A=(ab+bc+ca)(1/a+1/b+1/c)-abc(1/a^2 + 1/b^2 +1/c^2)
Cho a+b+c=1
và a^2+b^2+c^2=1
và a^3+b^3+c^3=1
Tính giá trị biểu thức (a-1)^2015+(b-1)^2017+(c-1)^2019
Cho 3 số a,b,c khác 0.Với điều kiện (a+b+c) (1/a+1/b+1/c)=1 Tính (a^11+b^11).( b^7+c^7).(a^2015+c^2015)
a/ Cho abc khác 0 và a+b+c=1/a+1/b+1/c. C/m b(a2-bc)(1-ac)=a(1-bc)(b2-ac)
b/ Cho abc khác 0 và (a+b+c)2 = a2+b2+c2. C/m \(\frac{1}{^{a^3}^{ }}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)