Rút gọn biểu thức P = \(\frac{2013^{2014}}{2013^{2013}}\) - \(\frac{2013^{2013}}{2013^{2012}}\)
rút gọn biểu thức P= 2013^2014 - 2013^2013/2013^2013 - 2013^2012
\(P=\frac{2013^{2014}-2013^{2013}}{2013^{2013}-2013^{2012}}\)
\(=\frac{2013^{2013}\cdot\left(2013-1\right)}{2013^{2012}\cdot\left(2013\right)-1}\)
\(=\frac{2013^{2013}}{2013^{2012}}=2013\)
Không tính cụ thể , hãy sắp xếp các biểu thức sau theo thứ tự giảm dần :
\(\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}\)
\(\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}\)
\(\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012+2013+2014}{2013+2014+2015}}\)
\(\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012+2013+2014}{2013+2014+2015}}\)
\(\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}\)
$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$
$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$
$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$
$\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$
$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}$
Rút gọn biểu thức: P=20132014 - 20132013 phần 20132013 - 20132012
P= 20132013*(2013-1) phần 20132012*(2013-1)
P=2013
Rút Gọn
P=2013^2014-2013^2013/2013^2013-2013^2012
\(P=\frac{2013^{2014}-2013^{2013}}{2013^{2013}-2013^{2012}}=\frac{2013}{1}=2013\)
P = 20132014-20132013/20132013-20132012
= 20132014 - 1 - 20132012
= 20132014 - 20132012 -1
= 2013(2014-2012) - 1
= 20132 -1
= 4052169 -1
= 4052168
P=\(\frac{2013^{2014}-2013^{2013}}{2013^{2013}-2013^{2012}}=2013.\left(\frac{2013^{2013}-2013^{2012}}{2013^{2013}-2013^{2012}}\right)=2013\)
So sánh 2 biểu thức A và B, biết rằng :
A=\(\frac{2012}{2013}\)+\(\frac{2013}{2014}\) và B= \(\frac{2012+2013}{2013+2014}\)
\(B=\frac{2012}{2013+2014}+\frac{2013}{2013+2014}< \frac{2012}{2013}+\frac{2013}{2014}\)
\(\Rightarrow A>B\)
\(B=\frac{2012+2013}{2013+2014}=\frac{2012}{2013+1014}+\frac{2013}{2013+1014}\)
Vì: \(\frac{2012}{2013+1014}< \frac{2012}{2013}\)và \(\frac{2013}{2013+2013}< \frac{2013}{2014}\)
\(\Rightarrow A>B\)
~ Rất vui vì giúp đc bn ~
Tính
\(\frac{\frac{2013}{2}+\frac{2013}{3}+\frac{2013}{4}+.......+\frac{2013}{2014}}{\frac{2013}{1}+\frac{2012}{2}+\frac{2013}{3}+.......+\frac{1}{2013}}\)
Rút gọn biểu thức sau:
A=\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2013}}{2012+\frac{2012}{2}+\frac{2011}{3}+....+\frac{1}{2013}}\)
Xét mẫu số ta có: \(2012+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}\)
=\(2012+\left(\frac{2014-2}{2}+\frac{2014-3}{3}+...+\frac{2014-2013}{2013}\right)\)
= \(2012+\left(\frac{2014}{2}+\frac{2014}{3}+\frac{2014}{4}+...+\frac{2014}{2013}\right)-\left(\frac{2}{2}+\frac{3}{3}+\frac{4}{4}+...+\frac{2013}{2013}\right)\)
= \(2012+2014\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}\right)-2012\)
= \(2014\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}\right)\)
\(\Rightarrow A=\frac{1}{2014}\)
tính GTBT D=\(\frac{\frac{2013}{2}+\frac{2013}{3}+\frac{2013}{4}+...+\frac{2013}{2014}}{\frac{2013}{1}+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}}\)
\(D=\frac{\frac{2013}{2}+\frac{2013}{3}+\frac{2013}{4}+...+\frac{2013}{2014}}{\frac{2013}{1}+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}}\)
\(=\frac{2013\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)}{\left(\frac{2012}{2}+1\right)+\left(\frac{2011}{3}+1\right)+...+\left(\frac{1}{2013}+1\right)+1}\)
\(=\frac{2013\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)}{\frac{2014}{2}+\frac{2014}{3}+...+\frac{2014}{2013}+\frac{2014}{2014}}\)
\(=\frac{2013\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)}{2014\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)}\)
\(=\frac{2013}{2014}\)
\(\frac{\frac{2013}{2}+\frac{2013}{3}+\frac{2013}{4}+................+\frac{2013}{2014}}{\frac{2013}{1}+\frac{2012}{2}+\frac{2011}{3}+.............+\frac{1}{2013}}\)
Tinh tổng trên