Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Minh Hiền Trang
Xem chi tiết
Tran May Mi
Xem chi tiết
Tuyển Trần Thị
16 tháng 6 2017 lúc 20:31

\(\left(a^3+b^3\right)\left(a^2+b^2\right)-\left(a+b\right)=a^5+a^3b^2+a^2b^3+b^5-\left(a+b\right)\)

                                                                =  \(a^5+b^5+a^2b^2\left(a+b\right)-\left(a+b\right)\)

                                                                =\(a^5+b^5+\left(a+b\right)-\left(a+b\right)\)

                                                               =\(a^5+b^5\left(dpcm\right)\)

Nguyễn Lê Quỳnh Như
Xem chi tiết
Dung Tr
Xem chi tiết
Nguyễn Thị BÍch Hậu
5 tháng 7 2015 lúc 9:39

1) a chia 6 dư 2 => a= 6k+2

b chia 6 dư 3 => b= 6k+3

=> ab=\(\left(6k+2\right)\left(6k+3\right)=36k^2+30k+6\)=> chia hết cho 6 

2) a= 5k+2; b=5k+3

=> \(ab=\left(5k+2\right)\left(5k+3\right)=25k^2+25k+6=25k\left(k+1\right)+6\)

=> dễ thấy 25k(k+1) chia hết cho 5. 6 chia 5 dư 1

=> ab chia 5 dư 1

thi hue nguyen
Xem chi tiết
headsot96
12 tháng 7 2019 lúc 14:43

a) Vì a chia 3 dư 1 nên a có dạng 3m+1 , vì b chia 3 dư 2 nên b có dạng 3n+2. \(\left(m,n\in N\right)\)

Ta có \(ab=\left(3m+1\right)\left(3n+2\right)=3mn+6m+3n+2\)

                \(=3\left(mn+2m+n\right)+2\)

Vậy ab chia 3 dư 2 .

b) Vì a chia 5 dư 4 nên a có dạng 5k-1 \(\left(k\in N\right)\)

Ta có \(a^2=\left(5k-1\right)^2=25k^2-10k+1=5\left(5k^2-2k\right)+1\)

Vậy \(a^2\) chia 5 dư 1 .

Tran Hien
Xem chi tiết
Nguyễn Lê Nguyên Vy
Xem chi tiết
Chiminh
23 tháng 8 2015 lúc 17:50

Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6

Lan Anh Phạm
Xem chi tiết
Đinh Đức Hùng
24 tháng 9 2017 lúc 12:41

Biến đổi VP ta có :

\(VP=\left(a^3+b^3\right)\left(a^2+b^2\right)-\left(a+b\right)\)

\(=a^5+a^3b^2+a^2b^3+b^5-\left(a+b\right)\)

\(=a^5+a.\left(ab\right)^2+b.\left(ab\right)^2+b^5-\left(a+b\right)\)

\(=a^5+a+b+b^5-\left(a+b\right)\) (vì \(ab=1\))

\(=a^5+b^5=VT\)(đpcm)

Lan Anh Phạm
24 tháng 9 2017 lúc 12:42

Biến đổi vế phải :
\(\left(a^3+b^3\right)\left(a^2+b^2\right)-\left(a+b\right)=a^5+b^5+a^3b^2+a^2b^3-\left(a+b\right) \)

\(=a^5+b^5+a^2b^2\left(a+b\right)-\left(a+b\right)\)

\(=a^5+b^5+\left(a+b\right)-\left(a+b\right)\)(vì ab=1)

\(=a^5+b^5\)

M Trangminsu
Xem chi tiết
Nguyễn Huế Anh
14 tháng 9 2017 lúc 19:51

Biến đổi vế phải:

(a3+b3)(a2+b2)-(a+b)=(a5+b5)+(a3b2+a2b3)-(a+b)=a5+b5+a2b2(a+b)-(a+b)

Thay ab=1 vào ta được:

a5+b5+(a+b)-(a+b)=a5+b5

Sau khi biến đổi ta thấy vế phải bằng vế trái.Vậy đẳng thức đã được chứng minh