tìm số tự nhiên n thỏa mãn n+30 và n-11 đều là bình phương của 1 số tự nhiên
Tìm số tự nhiên n thỏa mãn; n +30 và n-11 đều là bình phương của số tự nhiên
Tìm số tự nhiên n thỏa mãn n+30 và n-11 đều là bình phương của 1 số tự nhiên ? Giải giúp mình với
Theo đề: \(n+30=a^2\); \(n-11=b^2\)\(\left(a;b\in N\right)\)
Trừ vế theo vế, ta được: \(a^2-b^2=41\Rightarrow\left(a-b\right)\left(a+b\right)=41\)
Vì \(a-b< a+b\)nên ta có trường hợp sau
\(\hept{\begin{cases}a-b=1\\a+b=41\end{cases}\Rightarrow\hept{\begin{cases}a=21\\b=20\end{cases}}}\)
Vậy...
P/s: Bài này không dành cho lớp 6
Tìm n là số tự nhiên để: n+30 và n-11 là bình phương của 1 số tự nhiên
Với n+5 và n+30 là số chính phương
{n+5=a2n+30=b2{n+5=a2n+30=b2 ⇒n+5−n−30=a2−b2=(a−b)(a+b)=−25⇒n+5−n−30=a2−b2=(a−b)(a+b)=−25
Mà -25=-5.5=-1.25=-25.1
Giờ bn lập bảng các gt của a và b là đc
Chúc bn hok tốt :)
1. a) Tìm n∈N để: \(\left(23-n\right)\left(23+n\right)\) là SCP.
b) Tìm 3 số lẻ liên tiếp mà tổng bình phương của chúng là 1 SCP.
2. a) Tìm nghiệm nguyên: \(x^{11}+y^{11}=11z\)
b) Tìm số tự nhiên n thỏa mãn: \(361\left(n^3+5n+1\right)=85\left(n^4+6n^2+n+5\right)\)
1/ Tìm các cặp số tự nhiên xy thỏa mãn 35x+9=2.5y
2/ Số tự nhiên n sao cho n2+404 là số chính phương là ?
3/ Số tự nhiên a lớn nhất sao cho 80+a và 100-a đều là bội của a
Tìm các số tự nhiên n thỏa mãn 3n+1 và 4n+1 đều là các số chính phương và 8n + 3 là số nguyên tố
Bài 4 :
a) Tìm hai số tự nhiên chẵn liên tiếp biết hiệu các bình phương của 2 số ấy là 68
b) Tìm hai số tự nhiên lẻ liên tiếp biết tổng các bình phương của 2 số ấy là 2594
c) Tìm tất cả số tự nhiên n thỏa mãn \(n^2+6n+12\) là số chính phương
gọi 2 số đó là a; a + 2 (a thuộc N; a chẵn)
có a^2 - (a + 2)^2 = 68
=> a^2 - a^2 - 4a - 4 = 68
=> -4a - 4 = 68
=> -4a = 72
=> a = 18
=> a + 2 = 20
Tổng bình phương các số tự nhiên n thỏa mãn 1 ≤ n < 7 là...
1. Cho n là số tự nhiên có 2 chữ số. Tìm n biết n+4 và 2n đều là các số chính phương
2. Tìm x,y nguyên thỏa mãn điều kiện xy+2x+10y+19=0