Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Ngân
Xem chi tiết
Kaijo
Xem chi tiết
Bùi Lan Anh
27 tháng 2 2020 lúc 19:31

\(a.\frac{7x-3}{x-1}=\frac{3}{2}\)

\(\Leftrightarrow\frac{7x-3}{x-1}-\frac{3}{2}=0\)

\(\Leftrightarrow\frac{2\left(7x-3\right)}{2.\left(x-1\right)}-\frac{3\left(x-1\right)}{2\left(x-1\right)}=0\)

\(\Leftrightarrow\frac{14x-6-3x+3}{2\left(x-1\right)}=0\)

\(\Leftrightarrow11x-3=0\)

\(\Leftrightarrow x=\frac{3}{11}\)

\(b.\frac{2\left(3-7x\right)}{1+x}=\frac{1}{2}\)

\(\Leftrightarrow\frac{6-14x}{1+x}-\frac{1}{2}=0\)

\(\Leftrightarrow\frac{2\left(6-14x\right)}{2\left(1+x\right)}-\frac{1+x}{2\left(1+x\right)}=0\)

\(\Leftrightarrow\frac{12-28x-1-x}{2\left(1+x\right)}=0\)

\(\Leftrightarrow11-29x=0\)

\(\Leftrightarrow x=\frac{11}{29}\)

\(c.\frac{1}{x-2}+3=\frac{3-x}{x-2}\)

\(\Leftrightarrow\frac{1}{x-2}+\frac{3\left(x-2\right)}{x-2}-\frac{3-x}{x-2}=0\)

\(\Leftrightarrow\frac{1+3x-6-3+x}{x-2}=0\)

\(\Leftrightarrow4x-8=0\)

\(\Leftrightarrow x=2\)

\(d.\frac{x+5}{x-5}-\frac{x-5}{x+5}=\frac{20}{x^2-25}\)

\(\Leftrightarrow\frac{\left(x+5\right)^2}{x^2-25}-\frac{\left(x-5\right)^2}{x^2-25}-\frac{20}{x^2-25}=0\)

\(\Leftrightarrow\frac{x^2+10x+25-x^2+10x-25-20}{x^2-25}=0\)

\(\Leftrightarrow20x-20=0\)

\(\Leftrightarrow x=10\)

Khách vãng lai đã xóa
Armldcanv0976
Xem chi tiết
My Nguyễn Thị Trà
Xem chi tiết
Nguyễn Hưng Phát
2 tháng 2 2019 lúc 14:59

a,\(\left(\frac{x}{x+1}\right)^2+\left(\frac{x}{x-1}\right)^2=90\)\(\Leftrightarrow\left(\frac{x}{x+1}\right)^2+2.\frac{x}{x+1}.\frac{x}{x-1}+\left(\frac{x}{x-1}\right)^2-\frac{2x^2}{x^2-1}=90\)

\(\Leftrightarrow\left(\frac{x}{x+1}+\frac{x}{x-1}\right)^2-\frac{2x^2}{x^2-1}=90\)\(\Leftrightarrow\left(\frac{x^2-x+x^2+x}{x^2-1}\right)^2-\frac{2x^2}{x^2-1}=90\)

\(\Leftrightarrow\left(\frac{2x^2}{x^2-1}\right)^2-\frac{2x^2}{x^2-1}-90=0\)\(\Leftrightarrow\left(\frac{2x^2}{x^2-1}-10\right)\left(\frac{2x^2}{x^2-1}+9\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{2x^2}{x^2-1}=10\\\frac{2x^2}{x^2-1}=-9\end{cases}\Leftrightarrow......}\)

b,Đặt \(\frac{x-2}{x+1}=a;\frac{x+2}{x-1}=b\Rightarrow ab=\frac{\left(x-2\right)\left(x+2\right)}{\left(x+1\right)\left(x-1\right)}=\frac{x^2-4}{x^2-1}\)

Từ đó ta có phương trình:\(20a^2-5b^2+48ab=0\Leftrightarrow20a^2-2ab-5b^2+50ab=0\)

\(\Leftrightarrow2a\left(10a-b\right)+5b\left(10a-b\right)=0\Leftrightarrow\left(2a+5b\right)\left(10a-b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2a=-5b\\10a=b\end{cases}}\)

TH1:\(2a=-5b\Leftrightarrow\frac{2\left(x-2\right)}{x+1}=\frac{-5\left(x+2\right)}{x-1}\)\(\Rightarrow2\left(x-2\right)\left(x-1\right)=-5\left(x+2\right)\left(x+1\right)\)\(\Leftrightarrow2x^2-6x+4=-5x^2-15x-10\)\(\Leftrightarrow7x^2+9x+14=0\)

\(\Leftrightarrow7\left(x^2+\frac{9}{7}x+2\right)=0\Leftrightarrow7\left(x^2+2.\frac{9}{14}+\frac{81}{196}\right)+\frac{311}{28}=0\)

\(\Leftrightarrow7\left(x+\frac{9}{14}\right)^2+\frac{311}{28}=0\),vô lí
TH2:Tự làm nhé ,tương tự

Nguyễn Quỳnh Mai
Xem chi tiết
Thắng Nguyễn
4 tháng 3 2016 lúc 21:33

a)\(pt\Leftrightarrow-\frac{x}{2x^2-5}-\frac{25}{2x^2-50}+\frac{x}{x^2-5}+\frac{5}{x^2-5}=\frac{x}{2x^2+10x}-\frac{5}{2x^2+10x}\)

=>\(-\frac{x}{2x^2+10x}+\frac{5}{2x^2+10x}-\frac{x}{2x^2-50}-\frac{25}{2x^2-50}+\frac{x}{x^2-5}+\frac{5}{x^2-5}=0\)

\(\Leftrightarrow-\frac{5\left(x^2+8x-5\right)}{2\left(x-5\right)x\left(x^2-5\right)}=0\)

\(\Rightarrow\frac{1}{x-5}=0\Leftrightarrow\frac{1}{x}=0\Rightarrow\frac{1}{x^2-5}=0\)

=>x2+8x-5=0

=>82-(-4(1.5))=84

=>x1=(-8)+8:2=\(\sqrt{21}-4\)

=>x2=(-8)+8:2=\(-\sqrt{21}-4\)

=>x=±\(\sqrt{21}-4\)

b)\(\Leftrightarrow-\frac{x}{x+1}+\frac{1}{x+1}+\frac{x}{x-1}+\frac{1}{x-1}=\frac{16}{x^2-1}\)

\(\Rightarrow-\frac{16}{x^2-1}-\frac{x}{x+1}+\frac{1}{x+1}+\frac{x}{x-1}+\frac{1}{x-1}=0\)

\(\Rightarrow\frac{4\left(x-4\right)}{\left(x-1\right)\left(x+1\right)}=0\Leftrightarrow\frac{1}{x-1}=0\Rightarrow\frac{1}{x+1}=0\)

=>x=4

c)\(\Leftrightarrow-\frac{x^2}{x+1}-\frac{x}{x+1}+\frac{2}{x+1}+x+2=\frac{x}{x+1}-\frac{1}{x+1}+\frac{x}{x-1}+\frac{1}{x-1}\)

\(\Rightarrow-\frac{x^2}{x+1}-\frac{2x}{x+1}+\frac{3}{x+1}-\frac{x}{x-1}+x-\frac{1}{x-1}+2=0\)

\(\Rightarrow\frac{2\left(x-3\right)}{\left(x-1\right)\left(x+1\right)}=0\Leftrightarrow\frac{1}{x-1}=0\Rightarrow\frac{1}{x+1}=0\)

=>x=3

Garuda
Xem chi tiết
Trương Huy Hoàng
23 tháng 4 2020 lúc 20:09

Bài 1:

a, \(\frac{1}{x+1}+\frac{2}{x-1}=\frac{1+x^2}{x^2-1}\) (ĐKXĐ: x \(\ne\) \(\pm\) 1)

\(\Leftrightarrow\) \(\frac{x-1}{\left(x+1\right)\left(x-1\right)}+\frac{2\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}=\frac{1+x^2}{\left(x+1\right)\left(x-1\right)}\)

\(\Rightarrow\) x - 1 + 2(x + 1) = 1 + x2

\(\Leftrightarrow\) x - 1 + 2x + 2 - 1 - x2 = 0

\(\Leftrightarrow\) -x2 + 3x = 0

\(\Leftrightarrow\) x(3 - x) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(TMĐKXĐ\right)\\x=3\left(TMĐKXĐ\right)\end{matrix}\right.\)

Vậy S = {0; 3}

b, \(\frac{x-2}{x+2}-\frac{x}{x-2}=\frac{8}{x^2-4}\) (ĐKXĐ: x \(\ne\) \(\pm\) 2)

\(\Leftrightarrow\) \(\frac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}-\frac{x\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{8}{\left(x+2\right)\left(x-2\right)}\)

\(\Rightarrow\) (x - 2)2 - x(x + 2) = 8

\(\Leftrightarrow\) (x - 2)2 - x(x + 2) - 8 = 0

\(\Leftrightarrow\) x2 - 4x + 4 - x2 - 2x - 8 = 0

\(\Leftrightarrow\) -6x - 4 = 0

\(\Leftrightarrow\) x = \(\frac{-2}{3}\) (TMĐKXĐ)

Vậy S = {\(\frac{-2}{3}\)}

c, \(\frac{1}{x}\) + \(\frac{2}{x-3}\) = \(\frac{1-5x}{x^2-3x}\) (ĐKXĐ: x \(\ne\) 0; x \(\ne\) 3)

\(\Leftrightarrow\) \(\frac{x-3}{x\left(x-3\right)}+\frac{2x}{x\left(x-3\right)}=\frac{1-5x}{x\left(x-3\right)}\)

\(\Rightarrow\) x - 3 + 2x = 1 - 5x

\(\Leftrightarrow\) 3x - 3 = 1 - 5x

\(\Leftrightarrow\) 3x + 5x = 1 + 3

\(\Leftrightarrow\) 8x = 4

\(\Leftrightarrow\) x = \(\frac{1}{2}\) (TMĐKXĐ)

Vậy S = {\(\frac{1}{2}\)}

Bài 2:

a, \(\frac{1}{x+2}=\frac{5}{2-x}+\frac{12+x}{x^2-4}\)

\(\Leftrightarrow\) \(\frac{1}{x+2}=\frac{-5}{x-2}+\frac{12+x}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow\) \(\frac{x-2}{\left(x+2\right)\left(x-2\right)}=\frac{-5\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{12+x}{\left(x+2\right)\left(x-2\right)}\)

\(\Rightarrow\) x - 2 = -5(x + 2) + 12 + x

\(\Leftrightarrow\) x - 2 = -5x - 10 + 12 + x

\(\Leftrightarrow\) x - 2 = -4x + 2

\(\Leftrightarrow\) x + 4x = 2 + 2

\(\Leftrightarrow\) 5x = 4

\(\Leftrightarrow\) x = \(\frac{4}{5}\)

Vậy S = {\(\frac{4}{5}\)}

Chúc bn học tốt!! (Phần b hình như không có gì thì phải)

Lương Tiến Năng
Xem chi tiết
Nguyễn Hưng Phát
21 tháng 7 2018 lúc 16:23

ĐKXĐ:\(\hept{\begin{cases}x-2>0\\y-1>0\\z-5>0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x>2\\y>1\\z>5\end{cases}}\)

pt\(\Leftrightarrow\frac{4}{\sqrt{x-2}}+\frac{1}{\sqrt{y-1}}+\frac{25}{\sqrt{z-5}}+\sqrt{x-2}+\sqrt{y-1}+\sqrt{z-5}=16\)

Áp dụng BĐT Cauchy:

\(\frac{4}{\sqrt{x-2}}+\sqrt{x-2}+\frac{1}{\sqrt{y-1}}+\sqrt{y-1}+\frac{25}{\sqrt{z-5}}+\sqrt{z-5}\)

\(\ge2\sqrt{\frac{4}{\sqrt{x-2}}.\sqrt{x-2}}+2\sqrt{\frac{1}{\sqrt{y-1}}.\sqrt{y-1}}+2\sqrt{\frac{25}{\sqrt{z-5}}.\sqrt{z-5}}\)

\(=2\sqrt{4}+2\sqrt{1}+2\sqrt{25}=2.2+2.1+2.5\)

\(=4+2+10=16\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x-2=4\\y-1=1\\z-5=25\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=2\\z=30\end{cases}}\)

Ko cần bít
Xem chi tiết
Hiếu
4 tháng 3 2018 lúc 21:01

ĐKXĐ : \(x\ne\left\{5;-5;0\right\}\)

<=> \(\frac{2}{\left(x-5\right)\left(x+5\right)}-\frac{1}{x\left(x+5\right)}=\frac{4}{x\left(x-5\right)}\)

<=> \(\frac{2x}{x\left(x-5\right)\left(x+5\right)}-\frac{x-5}{x\left(x-5\right)\left(x+5\right)}=\frac{4\left(x+5\right)}{x\left(x-5\right)\left(x+5\right)}\)

=> \(2x-x+5=4x+20\)

<=> \(4x-2x+x=5-20\)

<=> \(3x=-15\) <=> \(x=-5\) ( ko t/m )

Vậy pt vô nghiệm.

Âu Dương Thiên Vy
4 tháng 3 2018 lúc 21:05

ĐKXĐ : x khác 0; x khác 5 ; x khác -5

\(\frac{2}{x^2-25}+\frac{1}{x^2+5x}=\frac{4}{x\left(x-5\right)}\Leftrightarrow\frac{2x}{x\left(x-5\right)\left(x+5\right)}+\frac{x-5}{x\left(x-5\right)\left(x+5\right)}=\frac{4\left(x+5\right)}{x\left(x-5\right)\left(x+5\right)}\)

\(\Leftrightarrow\frac{2x+x-5}{x\left(x-5\right)\left(x+5\right)}=\frac{4\left(x+5\right)}{x\left(x-5\right)\left(x+5\right)}\Rightarrow3x-5=4x+20\)

\(\Leftrightarrow3x-4x=20+5\Leftrightarrow-x=25\Leftrightarrow x=-25\)( thỏa mãn ĐKXĐ)

Vậy phương trình có nghiệm x = -25

Trịnh Quỳnh Nhi
4 tháng 3 2018 lúc 21:05

\(\frac{2}{x^2-25}-\frac{1}{x^2+5x}=\frac{4}{x\left(x-5\right)}\)

<=> \(\frac{2}{\left(x+5\right)\left(x-5\right)}-\frac{1}{x\left(x+5\right)}=\frac{4}{x\left(x-5\right)}\)

<=> \(\frac{2x}{x\left(x-5\right)\left(x+5\right)}-\frac{x-5}{x\left(x-5\right)\left(x+5\right)}=\frac{4\left(x+5\right)}{x\left(x-5\right)\left(x+5\right)}\)

<=> \(2x-\left(x-5\right)=4\left(x+5\right)\)

<=> \(2x-x+5=4x+20\)

<=> \(x+5=4x+20\)

<=> \(x-4x=20-5\)

<=> \(-3x=15< =>x=-5\)

Vậy ....

Rita Yoo
Xem chi tiết
Không Tên
11 tháng 2 2018 lúc 19:39

b)       \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=24\)

\(\Leftrightarrow\)\(\left(x^2+3x\right)\left(x^2+3x+2\right)-24=0\)

Đặt   \(x^2+3x=t\)   ta có:

          \(t\left(t+2\right)-24=0\)

\(\Leftrightarrow\)\(t^2+2t-24=0\)

\(\Leftrightarrow\)\(\left(1-4\right)\left(1+6\right)=0\)

đến đây bn giải tiếp