\(\begin{cases}\frac{3}{x^2+y^2-1}+\frac{2y}{x}=1\\x^2+y^2=22-\frac{4x}{y}\end{cases}\)
1)\(\begin{cases}x^2-y\left(x+y\right)+1=0\\\left(x^2+1\right)\left(x+y-2\right)+y=0\end{cases}\)
2)\(\begin{cases}x^2-4x+y^4+4y^2=2\\xy^2+2y^2+6x=23\end{cases}\)
3)\(\begin{cases}2x+\frac{1}{x+y}=3\\4x^2+4y^2+4xy+\frac{3}{\left(x+y\right)^2}=7\end{cases}\)
4)\(\begin{cases}y^6+x^9+3y^4+3y^2=8\\4y^2-3x^3y^2+x^3=2\end{cases}\)
5)\(\begin{cases}\sqrt{x+y}-2\sqrt{x-y}=1\\x+\sqrt{x^2+y^2}=8\end{cases}\)
6) \(\begin{cases}x+y-2=\frac{y}{x^2+1}\\x^2+y^2+xy=y-1\end{cases}\)
7) \(\begin{cases}4x-1=\sqrt{\left(2x+y\right).\left(2y+1\right)}\\\sqrt{x+2y+1}-\sqrt{x+y-1}=\sqrt{x-1}\end{cases}\)
8) \(\begin{cases}\left(x+y\right).\left(x+4y^2+y\right)+3y^4=0\\\sqrt{x+2y^2+1}-y^2+y+1=0\end{cases}\)
ôi trờiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
giải hệ phương trình:
1) \(\hept{\begin{cases}2\left(x+y\right)+3\left(x+y\right)=4\\\left(x+y\right)+2\left(x-y\right)=5\end{cases}}\)
2)\(\hept{\begin{cases}\left(2x-3\right)\left(2y+4\right)=4x\left(y-3\right)+54\\\left(x+1\right)\left(3y-3\right)=3y\left(x+1\right)-12_{ }\end{cases}}\)
3) \(\hept{\begin{cases}\frac{2y-5x}{3}+5=\frac{y+27}{4}-2x\\\frac{x+1}{3}+y=\frac{6y-5x}{7}\end{cases}}\)
4)\(\hept{\begin{cases}\frac{1}{2}\left(x+2\right)\left(y+3\right)-\frac{1}{2}xy=50\\\frac{1}{2}xy-\frac{1}{2}\left(x-2\right)\left(y-2\right)=32\end{cases}}\)
5)\(\hept{\begin{cases}\left(x+20\right)\left(y-1\right)=xy\\\left(x-10\right)\left(y+1\right)=xy\end{cases}}\)
Những bài còn lại chỉ cần phân tích ra rồi rút gọn là được nha. Bạn tự làm nha!
Đặt \(\hept{\begin{cases}x+y=a\\x-y=b\end{cases}}\)\(\Rightarrow\)ta có hệ \(\hept{\begin{cases}2a+3b=4\\a+2b=5\end{cases}}\Rightarrow\hept{\begin{cases}a=-7\\b=6\end{cases}}\)Từ đó ta có \(\hept{\begin{cases}x+y=-7\\x-y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{13}{2}\end{cases}}\)PS: Cái đề chỗ 3(x+y) phải thành 3(x-y) chứ
2) Từ hệ ta có \(\hept{\begin{cases}20x-6y=66\\-3x=-9\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\y=-1\end{cases}}\)
Cho đề \(\hept{\begin{cases}2y^2-x^2=1\\2\left(x^3-y\right)=y^3-x\end{cases}\Leftrightarrow}\)\(\hept{\begin{cases}2\left(y^2+1\right)-\left(x^2+1\right)=2\\x\left(2x^2+1\right)-y\left(y^2+2\right)=0\end{cases}}\)
đặt \(a=y^2+1,b=x^2+1\)
\(\Leftrightarrow\hept{\begin{cases}2a-b=2\\x\left(2b-1\right)-y\left(a+1\right)=0\end{cases}\Leftrightarrow\hept{\begin{cases}b=2a-2\\x\left(4a-5\right)-ya-y=0\end{cases}}}\Leftrightarrow\hept{\begin{cases}b=2a-2\\a=\frac{5x+y}{4x-y}\end{cases}\Leftrightarrow\hept{\begin{cases}b=\frac{2x+4y}{4x-y}\\a=\frac{5x+y}{4x-y}\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}y^2+1=\frac{5x+y}{4x-y}\left(1\right)\\x^2+1=\frac{2x+4y}{4x-y}\left(2\right)\end{cases}}\)
pt(1)-pt(2),ta dc:\(\left(x-y\right)\left(\frac{3}{4x-y}+x+y\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=y\left(3\right)\\\frac{3}{4x-y}+x+y=0\left(4\right)\end{cases}}\)
CM:PT (4) vô nghiệm giúp mình nha!Và xem lại nếu mình có lm sai hay thiếu đk j đó hãy chỉ giúp mình nha!!!Hoặc pt(4) có nghiệm thì hãy giải giúp mình luôn nha!Thanks
GIẢI CÁC PHƯƠNG TRÌNH:
A) \(\hept{\begin{cases}x+y=5\\\sqrt{\frac{x}{y+1}}+\sqrt{\frac{y+1}{x}=2}\end{cases}}\)
B) \(\hept{\begin{cases}x+y+\frac{x}{y}=9\\\left(x+y\right)\frac{x}{y}=20\end{cases}}\)
C) \(\hept{\begin{cases}\left|x-1\right|+\left|y-2\right|=1\\\left|x-1\right|+3y=3\end{cases}}\)
D) \(\hept{\begin{cases}x-2y=7\\x^2-y^2+2x+2y+4=0\end{cases}}\)
E) \(\hept{\begin{cases}xy+x+y=19\\x^2y+xy^2=84\end{cases}}\)
F) \(\hept{\begin{cases}2x^3=y+1\\2y^3=x+1\end{cases}}\)
G) \(\hept{\begin{cases}5xy=6\left(x+y\right)\\7yz=12\left(y+z\right)\\3zx=4\left(x+z\right)\end{cases}}\)
H) \(\hept{\begin{cases}\frac{4x^2}{4+x^2}=y\\\frac{4y^2}{4+y^2}=z\\\frac{4z^2}{4+z^2}=x\end{cases}}\)
\(C,\hept{\begin{cases}\left|x-1\right|+\left|y-2\right|=1\\\left|x-1\right|+3y=3\left(#\right)\end{cases}}\)
\(\Rightarrow3y-\left|y-2\right|=2\)(1)
*Nếu y > 2 thì
\(\left(1\right)\Leftrightarrow3y-y+2=2\)
\(\Leftrightarrow y=0\)(Loại do ko tm KĐX)
*Nếu y < 2 thì
\(\left(1\right)\Leftrightarrow3y-2+y=2\)
\(\Leftrightarrow y=1\)(Tm KĐX)
Thay y = 1 vào (#) được \(\left|x-1\right|+3=3\)
\(\Leftrightarrow x=1\)
Vậy hệ có nghiệm \(\hept{\begin{cases}x=1\\y=1\end{cases}}\)
\(A,ĐKXĐ:x\left(y+1\right)>0\)
\(\hept{\begin{cases}x+y=5\left(1\right)\\\sqrt{\frac{x}{y+1}}+\sqrt{\frac{y+1}{x}}=2\left(2\right)\end{cases}}\)
Giải (2)
Có bđt \(\frac{a}{b}+\frac{b}{a}\ge2\left(a,b>0\right)\)
Nên \(\sqrt{\frac{x}{y+1}}+\sqrt{\frac{y+1}{x}}\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow x=y+1\)
Thế x = y + 1 vảo pt (1) được
\(y+1+y=5\)
\(\Leftrightarrow y=2\)
\(\Rightarrow x=2+1=3\)
Thấy x = 3 ; y = 2 thỏa mãn ĐKXĐ
Vậy hệ có ngihiemej \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)
\(B,ĐKXĐ:y\ne0\)
Từ \(pt\left(2\right)\Rightarrow x\ne0;-y\)
Đặt \(\hept{\begin{cases}x+y=a\\\frac{x}{y}=b\end{cases}\left(a;b\ne0\right)}\)
Hệ trở thành\(\hept{\begin{cases}a+b=9\\ab=20\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=9-b\\\left(9-b\right)b=20\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=9-b\\9b-b^2=20\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=9-b\\b^2-9b+20=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=9-b\\b=5\end{cases}\left(h\right)\hept{\begin{cases}a=9-b\\b=4\end{cases}}}\)
*Với \(\hept{\begin{cases}a=9-b\\b=5\end{cases}}\Rightarrow\hept{\begin{cases}a=4\\b=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=4\\\frac{x}{y}=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=4\\x=5y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}6y=4\\x=5y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=\frac{2}{3}\\x=\frac{10}{3}\end{cases}}\left(TmĐKXĐ\right)\)
Trường hợp còn lại bạn làm tương tự
\(\hept{\begin{cases}\frac{6x-3}{y-1}-\frac{2y}{x+1}=5\\\frac{4x-2}{y-1}-\frac{4y}{x+1}=2\end{cases}}\)
Tìm 2 số x; y biết rằng:
a)\(\hept{\begin{cases}\frac{x}{4}=\frac{y}{-5}\\-3x+2y=55\end{cases}}\).
b)\(\hept{\begin{cases}\frac{x}{y}=\frac{-7}{4}\\4x-5y=72\end{cases}}\).
c)\(\hept{\begin{cases}\frac{x}{-3}=\frac{y}{8}\\x^2-y^2=\frac{-44}{5}\end{cases}}\).
d)\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{-3}\\3x^3+y^3=\frac{64}{9}\end{cases}}\).
Giải các hệ phương trình sau:
\(\hept{\begin{cases}\left(x-1\right)\left(2x+y\right)=0\\\left(y+1\right)\left(2y-x\right)=0\end{cases}}\)\(\hept{\begin{cases}x+y=\frac{21}{8}\\\frac{x}{y}+\frac{y}{x}=\frac{37}{6}\end{cases}}\)\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\\\frac{2}{xy}-\frac{1}{z^2}=4\end{cases}}\)\(\hept{\begin{cases}xy+x+y=71\\x^2y+xy^2=880\end{cases}}\)
\(\hept{\begin{cases}x\sqrt{y}+y\sqrt{x}=12\\x\sqrt{x}+y\sqrt{y}=28\end{cases}}\)
a) \(\hept{\begin{cases}\left(x-1\right)\left(2x+y\right)=0\\\left(y+1\right)\left(2y-x\right)=0\end{cases}}\)
\(\cdot x=1\Rightarrow\hept{\begin{cases}0=0\\\left(y+1\right)\left(2y-1\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}0=0\\y=-1;y=\frac{1}{2}\end{cases}}\)
\(\cdot y=-1\Rightarrow\hept{\begin{cases}\left(x-1\right)\left(2x-1\right)=0\\0=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1;x=\frac{1}{2}\\0=0\end{cases}}\)
\(\cdot x=2y\Rightarrow\hept{\begin{cases}\left(2y-1\right)5y=0\\0=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=0\Rightarrow x=0\\y=\frac{1}{2}\Rightarrow x=1\end{cases}}\)
\(y=-2x\Rightarrow\hept{\begin{cases}0=0\\\left(1-2x\right)5x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\Rightarrow y=-1\\x=0\Rightarrow y=0\end{cases}}\)
b) \(\hept{\begin{cases}x+y=\frac{21}{8}\\\frac{x}{y}+\frac{y}{x}=\frac{37}{6}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\\left(\frac{21}{8}-y\right)^2+y^2=\frac{37}{6}y\left(\frac{21}{8}-y\right)\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\2y^2-\frac{21}{4}y+\frac{441}{64}=-\frac{37}{6}y^2+\frac{259}{16}y\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\1568y^2-4116y+1323=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{8}\\y=\frac{9}{4}\end{cases}}hay\hept{\begin{cases}x=\frac{9}{4}\\y=\frac{3}{8}\end{cases}}\)
c) \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\\\frac{2}{xy}-\frac{1}{z^2}=4\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{z^2}=\left(2-\frac{1}{x}-\frac{1}{y}\right)^2\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x-y\right)^2=-4x^2y^2+2xy\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}8x^2y^2-4x^2y-4xy^2+x^2+y^2-2xy+2xy=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}4x^2y^2-4x^2y+x^2+4x^2y^2-4xy^2+y^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x\right)^2+\left(2xy-y\right)^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=\frac{-1}{2}\end{cases}}\)
d) \(\hept{\begin{cases}xy+x+y=71\\x^2y+xy^2=880\end{cases}}\). Đặt \(\hept{\begin{cases}x+y=S\\xy=P\end{cases}}\), ta có: \(\hept{\begin{cases}S+P=71\\SP=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P\left(71-P\right)=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P^2-71P+880=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S=16\\P=55\end{cases}}hay\hept{\begin{cases}S=55\\P=16\end{cases}}\)
\(\cdot\hept{\begin{cases}S=16\\P=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=16\\xy=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y\left(16-y\right)=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y^2-16y+55=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=5\\y=11\end{cases}}hay\hept{\begin{cases}x=11\\y=5\end{cases}}\)
\(\cdot\hept{\begin{cases}S=55\\P=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=55\\xy=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y\left(55-y\right)=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y^2-55y+16=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{55-3\sqrt{329}}{2}\\y=\frac{55+3\sqrt{329}}{2}\end{cases}}hay\hept{\begin{cases}x=\frac{55+3\sqrt{329}}{2}\\y=\frac{55-3\sqrt{329}}{2}\end{cases}}\)
e) \(\hept{\begin{cases}x\sqrt{y}+y\sqrt{x}=12\\x\sqrt{x}+y\sqrt{y}=28\end{cases}}\). Đặt \(\hept{\begin{cases}S=\sqrt{x}+\sqrt{y}\\P=\sqrt{xy}\end{cases}}\), ta có \(\hept{\begin{cases}SP=12\\P\left(S^2-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\P\left(\frac{144}{P^2}-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\2P^4+28P^2-144P=0\end{cases}}\)
Tự làm tiếp nhá! Đuối lắm luôn
1)giải các hệ PT sau bằng pp cộng đại số:
a)\(\hept{\begin{cases}3x-2y=1\\2x+4y=3\end{cases}}\)
b)\(\hept{\begin{cases}4x-3y=1\\-x+2y=1\end{cases}}\)
c)\(\hept{\begin{cases}\frac{2}{3}x+\frac{4}{3}y=1\\\frac{1}{2}x-\frac{3}{4}y=1\end{cases}}\)
a.\(\hept{\begin{cases}3x-2y=1\\2x+4y=3\end{cases}}\)
<=>\(\hept{\begin{cases}6x-4y=2\\2x+4y=3\end{cases}}\)
<=>\(\hept{\begin{cases}8x=5\\2x+4y=3\end{cases}}\)
<=>\(\hept{\begin{cases}x=\frac{5}{8}\\2\cdot\frac{5}{8}+4y=3\end{cases}}\)
<=>\(\hept{\begin{cases}x=\frac{5}{8}\\4y=\frac{7}{4}\end{cases}}\)
<=>\(\hept{\begin{cases}x=\frac{5}{8}\\y=\frac{7}{16}\end{cases}}\)
a) \(\hept{\begin{cases}3x-2y=1\\2x+4y=3\end{cases}}\Rightarrow\hept{\begin{cases}6x-4y=2\\2x+4y=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}8x=5\\2x+4y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{8}\\\frac{5}{4}+4y=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{5}{8}\\4y=\frac{7}{4}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{8}\\y=\frac{7}{16}\end{cases}}\)
vậy hpt có nghiệm duy nhất \(\left(x;y\right)=\left(\frac{5}{8};\frac{7}{16}\right)\)
b) \(\hept{\begin{cases}4x-3y=1\\-x+2y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}8x-6y=2\\-3x+6y=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}5x=5\\-3x+6y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\-3+6y=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)
vậy hpt có nghiệm duy nhất \(\left(x;y\right)=\left(1;1\right)\)
a, \(\hept{\begin{cases}3x-2y=1\\2x+4y=3\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}6x-4y=2\\2x+4y=3\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}8x=5\\2x+4y=3\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{5}{8}\\4y=\frac{7}{4}\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{5}{8}\\y=\frac{7}{16}\end{cases}}\)
giúp mình với ạ , mình đang cần gấp !!!
a,\(\hept{\begin{cases}3\left(x+1\right)+2\left(x+2y\right)=4\\4\left(x+1\right)-\left(x+2y\right)=9\end{cases}}\)
b, \(\hept{\begin{cases}x+\frac{1}{y}=\frac{-1}{2}\\2x-\frac{3}{y}=\frac{-7}{2}\end{cases}}\)
c,\(\hept{\begin{cases}\frac{x+2}{x+1}+\frac{2}{y-2}=6\\\frac{5}{x+1}-\frac{1}{y-2}=3\end{cases}}\)
a) \(\hept{\begin{cases}3\left(x+1\right)+2\left(x+2y\right)=4\\4\left(x+1\right)-\left(x+2y\right)=9\end{cases}}\Leftrightarrow\hept{\begin{cases}3\left(x+1\right)+2\left(x+2y\right)=4\\8\left(x+1\right)-2\left(x+2y\right)=18\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}11\left(x+1\right)=22\\3\left(x+1\right)+2\left(x+2y\right)=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\4y+8=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}}\)
b) ĐK : y khác 0
\(\hept{\begin{cases}x+\frac{1}{y}=-\frac{1}{2}\\2x-\frac{3}{y}=-\frac{7}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}3x+\frac{3}{y}=-\frac{3}{2}\\2x-\frac{3}{y}=-\frac{7}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}5x=-5\\3x+\frac{3}{y}=-\frac{3}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-1\\-3+\frac{3}{y}=-\frac{3}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\\frac{3}{y}=\frac{3}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\left(tm\right)\end{cases}}\)
c) ĐK : x khác -1 ; y khác 2
\(\hept{\begin{cases}\frac{x+2}{x+1}+\frac{2}{y-2}=6\\\frac{5}{x+1}-\frac{1}{y-2}=3\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{1}{x+1}+\frac{2}{y-2}=5\\\frac{5}{x+1}-\frac{1}{y-2}=3\end{cases}}\). Đặt \(\hept{\begin{cases}\frac{1}{x+1}=a\\\frac{1}{y-2}=b\end{cases}\left(a,b\ne0\right)}\)
\(\Leftrightarrow\hept{\begin{cases}a+2b=6\\5a-b=3\end{cases}}\Leftrightarrow\hept{\begin{cases}a+2b=5\\10a-2b=6\end{cases}}\Leftrightarrow\hept{\begin{cases}11a=11\\a+2b=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\end{cases}\left(tm\right)}\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{x+1}=1\\\frac{1}{y-2}=2\end{cases}}\Rightarrow\hept{\begin{cases}x+1=1\\y-2=\frac{1}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=\frac{5}{2}\end{cases}\left(tm\right)}\)