tìm x,y để x+y thuộc Z biết răng x^3+y^3=2
1. tìm x,y biết: 3/y=7/x và x+16=y
2. tìm x,y thuộc Z để: (x^2 - 3x + 5) /(x-3) thuộc Z
1)
Từ: \(\frac{3}{y}=\frac{7}{x}\)=>\(\frac{x}{7}=\frac{y}{3}\)
x+16=y =>x-y=-16
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{-16}{4}=-4\)(vì x-y=-16)
=>\(\frac{x}{7}=-4=>x=-28\)
=>\(\frac{y}{3}=-4=>y=-12\)
Vậy x=-28 ;y=-12
2)
=>x2-3x+5 chia hết cho x-3
mà (x-3)2 chia hết cho x-3
=>x2-3x+5 -(x-3)2 chia hết cho x-3
=> x2-3x+5 -x2-9 chia hết cho x-3
=>-3x+(-4) chia hết cho x-3
lại có : 3.(x-3) chia hết cho x-3
=>-3x-(-4)+3.(x-3) chia hết cho x-3
=>-3x+(-4)+3x-9 chia hết cho x-3
=>-13 chia hết cho x-3
=>x-3 \(\in\)Ư(13)={-1;1;-13;13}
=>x\(\in\){2;4;-9;16}
Tìm 3 số:x,y,z bit răng x/2 = y/3; y/4=z/5 và x+y-z=10
Ta co : x/2=y/3;y/4=z/5
=>x/8=y/12=z/15=(x+y-z) / (8+12-15)=10/5=2
Ta có x/8=2
=> x=16
y/12=2
=> y=24
z/15=2
=> z=30
Giải đầy đủ hộ mình nhé :
Bài 1: Tìm x,y,;biết
a, x+y=2
b,y+z=3
c,z+x=-5
Bài 2 : Tìm x,y thuộc Z, biết (x-3).(y+2)=-5
Bài 3 : Tìm a thuộc Z, biết a.(a+2)<0
Bài 4 : Tìm x thuộc Z, sao cho (x2 -4).(x2-10)<0
Bài 5 Tìm x thuộc Z, biết (x2-1).(x2-4)<0
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2
a)Tìm x,y thuộc z biết rằng (y+1).(xy-1)=3
b)tìm các số x,y,z biết rằng x+y=2 ;y+z=3 ;z+x=-5
Tìm x, y, z thuộc N* để : 3^x + 2^y = 1 + 2^z.
tìm x,y thuộc Z biết:
x+y=11; y+Z=3;Z+x=2
cộng hết lại
\(\left(x+y\right)+\left(y+z\right)+\left(z+x\right)=11+3+2=16\)
\(\Rightarrow2\left(x+y+z\right)=16\Rightarrow\left(x+y+z\right)=8\)
thay vào từng cái ban đầu
11+z=8=> z=8-11=-3
3+x=8=> x=8-3=5
2+y=8=> y=8-2=6
Cho x, y, z thuộc Z thỏa mãn x-y+z=2016. Tìm x, y, z, biết:
\(x^3-y^3+z^3=2017^2\)
y=x+z-a (a=2016)
y^3=(x+z)^3-a^3-3(x+z).a(x+z-a)
-y^3=-[x^3+z^3+3xz(x+z)-a^3-3(x+z).a(x+z-a)]
-3(x+z)[xz-ay]+2016^3=2017^2
2017 không chia hết cho 3 vô nghiệm nguyên
Bạn test lại xem hay biến đổi nhầm nhỉ
Bị lừa rồi.
thực ra rất đơn giản
\(x-y+z=2016\)(1)
\(x^3-y^3+z^3=2017^2\)(2)
(1) số số hạng lẻ phải chắn=> tất cả chẵn (*) hoạc 1 số chẵn(**)
(2) số số hạng lẻ phải lẻ=> vô nghiệm nguyên
tìm x,y,z thuộc z biết x+y=1,y+z=2,z+x=3
tìm x,y,z thuộc Z biết:
x+y=3 ; y+z=(-1) ; z+x= (-2)