Tinh T = 1/2 +1/6 + 1/12+1/20+1/30...+1/9702+1/9900
Tính T=1/2+1/6+1/12+1/20+1/30+....+1/9702+1/9900
T= 1 - 1/2 + 1/2 - 1/3 + ......+ 1/99 - 1/100
= 1 - 1/100
= 99/100
Tính t =1/2+1/6+1/12+1/20+1/30+...........+1/9702+1/9900
\(t=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(t=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(t=1-\frac{1}{100}=\frac{99}{100}\)
Vậy \(t=\frac{99}{100}\)
Tính T biết : 1/2+1/6+1/12+1/20+1/30+.........+1/9702+1/9900
tính T = 1/2 +1/6+1/12+1/20+1/30+...+1/9702+1/9900
T=
ta có : t = 1/1.2 + 1/2.3 + 1/3.4 + .... + 1/98.99 + 1/99.100
=> t = 1/1 - 1/2 + 1/2 - 1/3 + .... + 1/99 - 1/100
=> t = 1 - 1/100
=> t = 99/100
T=1/1x2+1/2x3+1/3x4+....................+1/98x99+1/99x100
T=1-1/2+1/2-1/3+..............+1/98-1/99+1/99-1/100
T=1-1/100
T=99/100
1/2 +1/6 +1/12 +1/20 +1/30 + +1/9702 +1/9900=T .Tim T
T=1/2+1/6+1/12+..............+1/9702+1/9900
T=1/1x2+1/2x3+1/3x4+...........+1/98x99+1/99x100
T=1-1/2+1/2-1/3+1/3-1/4+.........+1/98-1/99+1/99-1/100
T=1-1/100
T=99/100
Vậy T=99/100
Giải :
Đặt : A = \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+....+\frac{1}{9702}+\frac{1}{9900}\)
\(\Rightarrow A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{98.99}+\frac{1}{99.100}\)
\(\Rightarrow A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A=1-\frac{1}{100}=\frac{99}{100}\)
T = 1/2 +1/6 +1/12 + 1/20 + 1/30 + ... + 1/9702 + 1/9900
Hãy tính T = tổng các bn nhé !
T = \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+...+\frac{1}{98\cdot99}+\frac{1}{99\cdot100}=\)
T = \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}=\)
T = \(\frac{1}{1}-\frac{1}{100}=\)
T = \(\frac{99}{100}\)
\(T=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{9702}+\frac{1}{9900}\)
Tìm T
T là 99/100 . Đúng 100% luôn nhé .
1/2+ 1/6+ 1/12 +1/20+...+1/9702 +1/9900
\(\frac{1}{2}+\frac{1}{6}+............+\frac{1}{9900}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+............+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...........+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
Cho tổng A=1/2+5/6+11/12+19/20+...+9701/9702+9899/9900
Chứng tỏ A<99
Có: \(A=\frac{1}{2}+\frac{5}{6}+...+\frac{9899}{9900}\)
\(=1-\frac{1}{2}+1-\frac{1}{6}+...+1-\frac{1}{9900}\)
\(=\left(1+1+...+1\right)-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)
\(=99-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=99-\left(1-\frac{1}{100}\right)\)
\(=99-\frac{99}{100}< 99\)
\(\Rightarrow A< 99\)