Tìm x,y biết:
x+y=x.y=x:y(y khác 0)
Và nêu ra cách trình bài.
Thanks
Tìm x
tìm các số x,y biết:x+y=x.y=x:y
x+y=xy
=>x=xy-y=y(x-1)
=>x/y=x-1
mà theo đề:x+y=x/y
=>x+y=x-1
=>x+y=x+(-1)=>y=-1
Thay y=-1 vào x+y=xy ta có:
x+(-1)=x.(-1)=>x+(-1)=-x=>x-1=-x=>x-(-x)=1=>2x=1=>x=1/2=0,5
Vậy (x;y)=(0,5;-1)
Tìm số hữu tỉ x; y biết
a). x+y=x.y=x:y (y khác 0)
b). x-y=x.y=x:y (y khác 0)
a) y khác 0.
x.y = x: y nên \(x.y:\frac{x}{y}=1\) hay \(\frac{x.y.y}{x}=y^2=1\)
Vậy y = 1 hoặc -1 (chắc bạn hiểu chứ)
x+ y = x.y nên \(\frac{x+y}{x.y}=\frac{1}{x}+\frac{1}{y}=1\)
+ Nếu y = 1 thì 1/x = 1-1 = 0 => Không tìm được x
+ Nếu y=-1 thì 1/x = 1-(-1) = 2 => x=1/2
Vậy x=1/2 và y = -1
b) x.y = x: y => y = 1 hoặc -1 (câu a)
x-y = x.y nên \(\frac{x-y}{x.y}=\frac{1}{y}-\frac{1}{x}=1\)
+ Nếu y = 1 thì 1/x = 1-1 = 0 => Không tìm được x
+ Nếu y = -1 thì 1/x = -1 - 1 = -2 => x=-1/2
Vậy x=-1/2 và y=-1
a) xy = x : y
<=> xy2 = x
<=> y2 = 1
<=> y = 1 hoặc y = -1
-nếu y = 1 có
x + 1 = x
<=> 1 = 0 (loại)
-nếu y = -1 có
x - 1 = -x
<=> x = \(\frac{1}{2}\)
thay vào thấy thỏa mãn
Vậy x = \(\frac{1}{2}\) và y = -1
a) x+y = xy = x:y
* xy = x:y
=> xy . y = x
x . y^2 = x
xy^2 - x = 0
x( y^2 - 1 ) = 0
=> x=0 => x=0
y^2 - 1 = 0 y=+- 1
* x+y = xy
+) x=0 => 0+y = 0.y =0
y=0 (loaị)
+) y=1 => x+1 = x.1
1=0 (loại)
+) y= (-1) => x-1 = x.(-1)
x-1=x
x + x= 1
=> x=1/2
Vậy x= 1/2 ; y= -1
Tìm 2 số hữu tỉ x và y biết x+y=x.y=x:y và y khác 0
Ta có:x+y=xy=>x=xy-y=>x=y(x-1)=>x:y=x-1 (1)
Mà x:y=x+y (2)
Từ (1) và (2) ta suy ra:y=-1
nên x=\(\frac{1}{2}\)
xy = x : y
<=> xy2 = x
<=> y2 = 1
<=> y = 1 hoặc y = -1
-nếu y = 1 có
x + 1 = x
<=> 1 = 0 (loại)
-nếu y = -1 có
x - 1 = -x
<=> x = 1212
thay vào thấy thỏa mãn
Vậy x = 1212 và y = -1
tìm 2 số hữu tỉ x và y( y khác 0) biết : x-y=x.y=x:y
Tìm x, y thuộc Q sao cho : x+y=x.y=x:y(y khác 0)
Câu 2 : x-y=x.y=x:y( y khác 0)
Câu 3: Chứng minh rằng từ tỉ lệ thức a:b=c:d ( a-b khác 0, c-d khác 0)ta có thể suy ra tỉ lệ thức a+b: a-b = c+ d chia cho c-d( phân số nha) tại mình bấm không được
tìm hai số hữu tỉ x và y(y khác 0) sao cho x+y=x.y=x:y
xy=x:y
=>y2=x:x=1
=>y=1 hoặc y=-1
*)y=1 =>x+1=x(vô lí)
*)y=-1 =>x-1=-x
=>x=1/2
Vậy y=-1 x=1/2
ta có x + y =xy => x = xy - y => x = y(x-1)
Ta lại có x + y = x / y thay x = y(x-1) vào vế phải :
x+ y = \(\frac{y\left(x-1\right)}{y}=x-1\)
=> x + y = x- 1 => y = -1
ta có x + y = xy
thay y = -1 vào ta có:
x + - 1 = -1 .x => x - 1 = -x => 2x = -1 => x = -1/2
VẬy y = -1 ; x = -1/2
đua phía dưới chuyển về đối đầu ngũ người vô đối
Tìm 2 số hữu tỉ x và y sao cho : x-y=x.y=x:y(y khác 0)
xy=x:y
=>y.y=x:x
=>y2=1
=>y=1 hoặc y=-1
*)y=1
=>x+1=x(vô lí)
*)y=-1
=>x-1=-x
<=>2x=1
<=->x=1/2
Vậy y=-1 x=1/2
Tìm hai số hữu tỉ x và y sao cho x+y=x.y=x:y với y khác 0
xy=x:y
\(\Rightarrow y^2=x:x=1\)
\(\Rightarrow y=1\) hoặc \(y=-1\)
\(y=1\Rightarrow x+1=x\)( vô lí)
\(y=-1\Rightarrow x-1=-x\)
\(\Rightarrow x=\frac{1}{2}\)
Vậy x=\(\frac{1}{2}\), \(y=-1\)
tíc mình nha
\(x+y=x.y=\frac{x}{y}\)(1)
Nhân 3 vế với y
\(y\left(x+y\right)=x.y^2=x\)
Vậy:
\(x.y^2=x\)
Chia hai vế cho x:
\(y^2=1\Rightarrow y=1\)(2)
Thế (2) vào (1)
\(x+1=x.1=\frac{x}{1}\)
\(\Leftrightarrow x+1=x=x\)
\(\Leftrightarrow x-x=-1\Leftrightarrow0=\left(-1\right)\text{(Vô lý)}\)
Vậy không thể tìm được x và y
tìm x,y ( y khác 0) biết : x + y=x.y=x:y
Ta có:
x + y = x.y => x = x.y - y = y.(x - 1)
=> x : y = x - 1 = x + y
=> y = -1
=> x = -1.(x - 1) = -x + 1
=> x + x = 1 = 2x
=> x = 1/2
Vậy x = 1/2; y = -1