9n+1 không chia hết cho 100
n2+9n+12 không chia hết cho 121
CMR: 9n3 +9n2 +3n -16 không chia hết cho 343 Với mọi n thuộc N
ta có 343=7^3
vì 9n^3 không chia hết cho 7
vì 9n^2 không chia hết cho 7
vì 3n không chia hết cho 7
vì 16 không chia hết cho 7
=> 9n^3+9n^2+3n-16 không chia hết cho 343
CMR: Với mọi số nguyên dương n ta có:
a.n2+11n-10 không chia hết cho 49
b.n2+9n+12 không chia hết cho 121
a) Ta lam theo cach quy nap, Dat n=k
\(n^2+11n-10=k^2+11k-10\)khong chia het cho 49
Ta phai chung minh cung dung voi k+1
Ta co: \(\left(k+1\right)^2+11\left(k+1\right)-10=k^2+2k+1+11k+11-10=k^2+13k+2\)
\(=k^2+2\times k\times\frac{13}{2}+\frac{169}{4}-\frac{169}{4}+2=\left(k+\frac{13}{2}\right)^2-40,25\) khong chia het cho 49
=> DPCM
Bài 1 : tìm n sao cho
a,4n-7 chia hết cho n+3
b,9n-6chia hết cho 2n - 1
Bài 2: tìm a biết a chia 8 dư 7 , chia 125 dư 4 . Biết 100<a<1000
giải giúp mình nha mình đang cần gấp
Bài 1 :
a) Ta có :
\(4n-7=4n+12-19=4.\left(n+3\right)-19\)
Ta thấy \(4.\left(n+3\right)⋮n+3\Rightarrow\left(-19\right)⋮n+3\Rightarrow\left(n+3\right)\inƯ\left(-19\right)\)
\(Ư\left(-19\right)=\left\{1;-1;19;-19\right\}\)
Do đó :
\(n+3=1\Rightarrow n=1-3=-2\)
\(n+3=-1\Rightarrow n=-1-3=-4\)
\(n+3=19\Rightarrow n=19-3=16\)
\(n+3=-19\Rightarrow n=-19-3=-22\)
Vậy \(n\in\left\{-2;-4;16;-22\right\}\)
BÀI 2:
a chia 8 dư 7 \(\Rightarrow\)\(a-7\)\(⋮\)\(8\)\(\Rightarrow\)\(a-7+128\)\(⋮\)\(8\)\(\Rightarrow\)\(a+121\)\(⋮\)\(8\)
a chia 125 dư 4 \(\Rightarrow\)\(a-4\)\(⋮\)\(125\)\(\Rightarrow\)\(a-4+125\)\(⋮\)\(125\)\(\Rightarrow\)\(a+121\) \(⋮\)\(125\)
suy ra: \(a+121\)\(\in BC\left(8;125\right)=B\left(1024\right)=\left\{0;1024;2048;3072;...\right\}\)
\(\Rightarrow\)\(a\)\(\in\left\{903;1927;....\right\}\)
mà \(100< a< 1000\)
\(\Rightarrow\)\(a=903\)
cho n là số nguyên
chứng minh n2 + 9n + 24 không chia hết cho 25
Giả sử n2+9n+24 chia hết cho 25
=> (n+3)2+15 chia hết cho 5
=> n+3 chia hết cho 5
=> (n+3)2 chia hết cho 25
=> (n+3)2+15 không chia hết cho 25 ( Vô lý)
=> giả sử sai
=> đccm
Giả sử \(n^2+9n+24⋮25\)\(\Rightarrow n^2+9n+24⋮5\)(1)
Ta có \(n^2+9n+24\)\(=n^2+2n+7n+14+10\)\(=n\left(n+2\right)+7\left(n+2\right)+10\)\(=\left(n+2\right)\left(n+7\right)+10\)(2)
Từ (1) và (2)\(\Rightarrow\left(n+2\right)\left(n+7\right)+10⋮5\)
Mà \(10⋮5\)nên \(\left(n+2\right)\left(n+7\right)⋮5\), mà 5 là số nguyên tố nên 1 trong 2 số \(n+2;n+7\)chia hết cho 5
Khi \(n+2⋮5\)thì \(n+2+5⋮5\)hay \(n+7⋮5\)\(\Rightarrow\left(n+2\right)\left(n+7\right)⋮25\)
Lại có \(\left(n+2\right)\left(n+7\right)+10⋮25\)(giả sử) nên \(10⋮25\)(vô lí)
Khi \(n+7⋮5\)thì \(n+7-5⋮5\)hay \(n+2⋮5\)\(\Rightarrow\left(n+2\right)\left(n+7\right)⋮25\)
Lại có \(\left(n+2\right)\left(n+7\right)+10⋮25\)(giả sử) nên \(10⋮25\)(vô lí)
Vậy điều giả sử sai \(\Rightarrow n^2+9n+24⋮̸25\)
(-15) chia hết cho 9n-1).Tìm n
< = > 9n - 1 thuộc U(-15) = {-15;-5;-3;-1;1;3;5;15}
n là số nguyên < = > n = 0
-15 chia hết cho 9n-1
=>9n-1EƯ(-15)={1;-1;3;-3;5;-5;15;-15}
=>9nE{2;0;4;-2;6;-4;16;-14}
=>n=0
Vạy n=0 thì thỏa mãn đề(n nguyên)
n^2 + 9n + 1 chia hết cho n + 11
=>n^2+11n-2n-22+23 chia hết cho n+11
=>\(n+11\in\left\{1;-1;23;-23\right\}\)
=>\(n\in\left\{-10;-12;12;-34\right\}\)
n^2 + 9n + 1 chia hết cho n + 11
10^n -9n -1 chia hết cho 27
từ 1- 100 có bao số không chia hết cho 2 và không chia hết cho 3