Biết khi chia a cho 6 thì được số dư là 4, khi chia b cho 6 thì được số dư là 5. Tìm số dư khi chia:
a) a+b cho 3
b) 2a+b cho 6
Tìm số tự nhiên b, biết khi chia 64 cho b thì được thương là 4 và số dư là 12.
Tìm số tự nhiên c, biết khi chia số 83 cho c thì được thương là 5 và số dư là 13.
Tìm số tự nhiên b, biết khi chia b cho 14 thì được thương là 5 và số dư là số lớn nhất có thể có trong phép chia ấy.
Tìm số tự nhiên a, biêt khi chia a cho 17 thì được thương là 6 và số dư là số lớn nhất có thể có trong phép chia ấy.
+)b=(64-12)/4=13
+)c=(83-13)/5=13
+)b=14*5+13=83
+)a=17*6+16=118
Khi chia số a cho 7 được số dư là 5 , khi chia số b cho 7 thì được số dư là 4 . Tìm số dư khi a+b rồi chia 7
1, Khi chia một STN a cho 4, ta được số dư là 3 còn khi chia cho 9 ta được số dư là 5. Tìm số dư trong phép chia a cho 36
2, Khi chia một STN a cho một STN b ta được thương là 18 số dư là 24. Hỏi thương và số dư thay đổi thế nào thì SBC và SC giảm đi 6 lần
3, Tìm số dư trong phép chia sau:
\(a,2^{1000}:5\)
\(b,2^{1000}:25\)
Bài 1:
Theo đề bài ta có:
\(a=4q_1+3=9q_2+5\) (\(q_1\) và \(q_2\) là thương trong hai phép chia)
\(\Rightarrow\left[\begin{matrix}a+13=4q_1+3+13=4\left(q_1+4\right)\left(1\right)\\a+13=9q_2+5+13=9\left(q_2+2\right)\left(2\right)\end{matrix}\right.\)
Từ (1) và (2) suy ra: \(a+13=BC\left(4;9\right)\)
Mà \(Ư\left(4;9\right)=1\Rightarrow a+13=BC\left(4;9\right)=4.9=36\)
\(\Rightarrow a+13=36k\left(k\ne0\right)\)
\(\Rightarrow a=36k-13=36\left(k-1\right)+23\)
Vậy \(a\div36\) dư \(23\)
Câu 1
Theo bài ra ta có:
\(a=4q_1+3=9q_2+5\)(q1 và q2 là thương của 2 phép chia)
\(\Rightarrow a+13=4q_1+3+13=4\left(q_1+4\right)\left(1\right)\)
và \(a+13=9q_2+5+13=9.\left(q_2+2\right)\left(2\right)\)
Từ (1) và (2) ta có \(a+13\) là bội của 4 và 9 mà ƯC(4;9)=1
nên a là bội của 4.9=36
\(\Rightarrow a+13=36k\left(k\in N\right)\)
\(\Rightarrow a=36k-13\)
\(\Rightarrow a=36.\left(k-1\right)+23\)
Vậy a chia 36 dư 23
Bài 3:
\(a,2^{1000}\div5\)
Ta có:
\(2^{1000}=\left(2^4\right)^{250}=\overline{\left(...6\right)}^{250}=\overline{\left(...6\right)}\)
Vì a có tận cùng là 6
\(\Rightarrow2^{1000}\div5\) dư \(1\)
Khi chia 1 số a cho 9 được dư là 5,khi chia b cho 9 được dư là 6, chia c cho 9 được dư la 4. Hỏi khi chia a+b cho 9, a+c cho 9 được số dư là bao nhiêu?
Ta chọn một số chia 9 dư 5 6 4 bất kì:ta lấy số 14 15 13 đã chia 9 dư 5 6 4
=>14 +15 : 9 =3,(2) rồi ta lấy 3 x 9 =27 29-27=2
=>14+13 : 9 =3 rồi ta lấy 3 x 9 =27 27 - 27 =0
a+b chia 9 dư 2
a+c chia 9 dư 0
mình là Tùng nhưng lúc đó ko có nick nên mượn nick chị
Tìm số tự nhiên nhỏ nhất sao cho khi chia a cho 3;5;7 được số dư thứ tư là 2;4;6
mot so tu nhien a khi chia hết cho 4 thì dư 3 ; chia cho 5 thì dư 4; chia cho 6 thì dư 5 .Tìm số a biết rằng 200 nhỏ hơn hoặc bằng a bé hơn hoặc bằng 400
Cho số 20ab là số tự nhiên có 4 chữ số, biết rằng khi chia 20ab cho 9 thì dư 6, chia cho 5 thì dư 3 và chia cho 2 thì dư 1. tìm chữ số thay vào a và b để được số đã cho
chia 5 dư 3 thì => b=3 hoặc b=8. Thử từng trường hợp b rồi tính a là ra kết quả.
1. Chứng tỏ rằng:
a. 105 + 35 chia hết cho 9 và cho 5
b. 105 + 98 chia hết cho 2 và cho 9
c. 102012 + 8 chia hết cho 3 và cho 9
d. 11...1 (27 chữ số 1) chia hết cho 27
2. Một số tự nhiên khi chia cho 4, cho 5, cho 6 đều dư 1. Tìm số đó biết rằng số đó chia hết cho 7 và nhỏ hơn 400.
3. Một số tự nhiên a khi chia hết cho 4 thì dư 3, chia cho 5 thì dư 4, chia cho 6 thì dư 5. Tìm số a, biết rằng 200 _< a _< 400.
4. Tìm số tự nhiên nhỏ nhất khi chia cho 15, 20, 25 được số dư lần lượt là 5, 10, 15.
Tìm số tự nhiên n, biết khi chia n cho 12 thì được thương là 4 và số dư r nhỏ nhất có thể .7) tìm số tự nhiên a, biết khi chia a cho 17 thì được thương là 6 và số dư lớn nhất có thể trong phép chia ấy
Bài 6:
Số dư là số dư lớn nhất có thể nên số dư là:
12 - 1 = 11
Số tự nhiên n là:
4 \(\times\) 12 + 11 = 59
kl...
Bài 7: số dư là số dư lớn nhất có thể nên số dư là:
17 - 1 = 16
Số a là: 6 \(\times\) 17 + 16 = 118
kl...