A= 3+3^2+3^3+...+3^2019 , thu gọn a, b,tìm x thuộc n để 2a+3=3^x
Cho biểu thức:
A= 3+32+33+...+3100
a)Thu gọn biểu thức A
b) Chứng tỏ 2A+3 là 1 lũy thừa
c)Tìm x thuộc N để 2A+3=3x
trả lời câu c nha
A=3+3^2 +3^+...+3^99+3^100
3A=3^2+3^3+...+3^100+3^101
3A-A=2A=3^101-3
Do đó 2A+3=3^101.Theo đề bài,2A+3=3^x
Vậy x=101
^ là mụ nha
cho A=3^1 +3^2 +3^3+....+3^2006 Thu gọn A b,tìm x để 2A+3 =3^x
3A=3^2+3^3+...+3^2007
=>3a-A=(3^2+3^3+...+3^2007)-(3^1+3^2+...+3^2006)
=>2A=3^2007-3^1=3^2007-3
=>2A+3=3^2007-3+3=3^2007=3^x
=>x=2007
CHO A = 3^+3^2+3^3+........+3^2006
a) thu gọn A
b) tìm X để 2A+3=3^x
cho A=3^1 + 3^2 +..........+3^2006
a; thu gọn A
b; tìm x để 2A+3=3^x
Bài 1: Cho A= 3^1 + 3^2 + 3^3 + ... + 3^2006
a) Thu gọn A
b) Tìm x để 2A + 3 = 3x
Bài 2: Cho B= 3 + 3^2 + 3^3 + ... + 3^100. Tìm số tự nhiên n, biết rằng 2B +3 = 3n
B=3+3^2+...+3^100.
3B=3.3+3^2.3+...+3^100.3
3B=3^2+3^3+...+3^101
3B-B=(3^2+3^3+...+3^101)-(3+3^2+...+3^100)
2B=3^101-3
Mà2B+3=3^n
Suy ra:3^101-3+3=3^n
3^n+3^101
Vậy n=101
Bài 1(b) làm tương tự,còn bài (a) thì bạn tự làm
Cho A=3^1+3^2+3^3+..........=3^2010
a) Thu gọn A
b)Tìm x để 2A+3=3^x
GIÚP MIK VS NHA MẤY BN !!!!
a,Ta có:3A=32+33+................+32011
\(\Rightarrow3A-A=\left(3^2+3^3+.....+3^{2011}\right)-\left(3+3^2+.....+3^{2010}\right)\)
\(\Rightarrow2A=3^{2011}-3\)
\(\Rightarrow A=\frac{3^{2011}-3}{2}\)
b,Ta có:\(2A=3^{2011}-3\Rightarrow2A+3=3^{2011}\Rightarrow x=2011\)
cho A = 3 + 32 + 33 + ... + 32006
a) thu gọn A
b) tìm x để 2A + 3 = 3x
3A - A = (32 + 33 + 34 + ... + 32007) - (3 + 32 + 33 + ... + 32006)
2A = 32007 - 3\(\Rightarrow\hept{\begin{cases}A=\frac{3^{2007}-3}{2}\\2A+3=3^{2007}\Rightarrow x=2007\end{cases}}\)
\(A=3+3^2+3^3+...+3^{2016}\)
\(\Rightarrow3A=3\left(3+3^2+3^3+...+3^{2016}\right)\)
\(\Rightarrow3A=3^2+3^3+3^4+...+3^{2017}\)
\(\Rightarrow3A-A=\left(3^2+3^3+3^4+...+3^{2017}\right)-\left(3+3^2+3^3+3^{2016}\right)\)
\(\Rightarrow2A=-3+3^{2017}\)
\(\Rightarrow A=\frac{3+3^{2017}}{2}\)
b) \(2A+3=-3+3-3^{2017}=3^{2017}=3^x\)
\(\Rightarrow x=2017\)
Cho A=3^1+3^2+3^3+...+3^2006
Thu gọn A
Tìm x để 2A+3=3^x
\(A=3+3^2+3^3+...+3^{2006}\)
\(\Leftrightarrow3A=3\left(3+3^2+3^3+....+3^{2006}\right)\)
\(\Leftrightarrow3A=3^2+3^3+3^4+....+3^{2007}\)
\(\Leftrightarrow3A-A=\left(3^2+3^3+3^4+...+3^{2007}\right)-\left(3+3^2+3^3+...+3^{2006}\right)\)
\(\Leftrightarrow2A=3^{2007}-3\)
\(\Leftrightarrow A=\frac{3^{2007}-3}{2}\)
Ta có \(2A=3^{2007}-3\)
=> 2A+3=\(3^{2007}-3+3=3^{2007}\)
=> x=2007
A=3^1+3^2+3^3+....+3^2006
3A=3^2+3^3+...+3^2007
=>2A=3^2007-3
=>2A+3=3^x
3^2007-3+3=3^x
3^2007=3^x
=>x=2007
Vậy x=2007
\(A=3^1+3^2+3^3+3^4+......+3^{2006}\)
a,thu gọn A
b, tìm x để 2A + 3= \(3^x\)
Ta có : \(A=3+3^2+3^3+......+3^{2006}\)
=> \(3A=3^2+3^3+......+3^{2007}\)
=> \(3A-A=3^{2007}-3\)
=> \(2A=3^{2007}-3\)
=> \(A=\frac{3^{2007}-3}{2}\)
b) Ta có : \(2A=3^{2007}-3\) (theo ý a)
=> \(2A+3=3^{2007}\)
=> x = 2007
\(A=3+3^2+3^3+.........+3^{2006}\)
\(\Leftrightarrow3A=3^2+3^3+.........+3^{2007}\)
\(\Leftrightarrow3A-A=\left(3^2+3^3+.......+3^{2007}\right)-\left(3+3^2+.....+3^{2006}\right)\)
\(\Leftrightarrow2A=3^{2007}-3\)
\(\Leftrightarrow A=\frac{3^{2007}-3}{2}\)
\(\Leftrightarrow2A+3=3^{2007}\)
\(\Leftrightarrow3^x=3^{2007}\)
\(\Leftrightarrow x=2007\left(tm\right)\)
a)\(A=3+3^2+3^3+...+3^{2006}\)
=>\(3A=3\left(3+3^2+3^3+...+3^{2006}\right)=3^2+3^3+3^4+...+3^{2007}\)
=>\(3A-A=\left(3^2+3^3+3^4+...+3^{2007}\right)-\left(3+3^2+3^3+...+3^{2006}\right)\)
=>\(2A=3^{2007}-3\Rightarrow A=\frac{3^{2007}-3}{2}\)
b)\(2A+3=3^x\Rightarrow2.\frac{3^{2007}-3}{2}+3=3^x\Rightarrow3^{2007}=3^x\Rightarrow x=2007\)