Tính tổng các hệ số khi khai triển đa thức P(x) = (x^3 − 2x^2 + 2)^2018 .
Bài 3: Cho đa thức H(x) = ( 2x – 1)20.
a) Tính tổng hệ số của đa thức H(x) khi khai triển .
b) Tính tổng hệ số bậc chẵn trừ tổng hệ số bậc lẽ của đa thức H(x) khi khai triển .
cho đa thức F(x)= (2017x-2018)2019
khi khai triển ta đc đa thức bậc 2019
Tính tổng các hệ số của các số hạng của đa thức sau khi khai triển
Tính tổng các hệ số của các hạng tử của đa thức nhận được sau khi đã triển khai và viết đa thức dưới dạng thu gọn
(x4+4x2-5x+1)2017.(2x4-4x2+4x-1)2018
Đặt \(A\left(x\right)=\left(x^4+4x^2-5x+1\right)^{2017}.\left(2x^4-4x^2+4x-1\right)^{2018}\)
Gọi đa thức A(x) sau khi bỏ dấu ngoặc là :
\(A\left(x\right)=a_{32280}x^{32280}+a_{32279}x^{32279}+....+a_1x+a_0\)
Ta thấy tổng giá trị các hệ số của đa thức \(a_{32280}+a_{32279}+...+a_1+a_0\)chính là giá trị của đa thức tại \(x=1\)
Ta có \(A\left(1\right)=\left(1^4+4.1^2-5.1+1\right)^{2017}.\left(2.1^4-4.1^2+4.1-1\right)^{2018}=0\)
Vì \(A\left(1\right)=0\)nên \(a_{32280}+a_{32279}+...+a_1+a_0=0\)
Vậy tổng các hệ số của đa thức sau khi bỏ dấu ngoặc bằng 0
Tổng các hệ số của đa thức f(x)= (2x-5)2 khi triển khai hằng đẳng thức là...
f(x) = (2x - 5)2 = 4x2 - 20x + 25.Tổng các hệ số của đa thức f(x) được triển khai là : 4 - 20 + 25 = 9
Cho đa thức q(x) = (3x3 - 2x2 + 3x - 4)10 khi khai triển đa thức q(x) ta được đa thức f(x) . Sắp xếp theo thứ tự giảm dần của biến. Tính tổng các hệ số f(x).
Tính tổng các hệ số của đa thức \(P\left(x\right)=\left(x^3-3x^2+2x-1\right)^{2020}\)sau khi khai triển thu gọn và sắp xếp
Tính tổng các hệ số của đa thức sau sau khi khai triển và thu gọn.
P(x)=(x^4 + 4x^2 - 5x + 1)*2014*2015*(2x^4 - 4x^2 + 4x -1)
Trong khai triển \(P\left(x\right)=\left(3-2x\right)^9\) , hãy tính tổng các hệ số của đa thức P(x).
Tổng hệ số trong khai triển \(P\left(x\right)\) luôn luôn bằng \(P\left(1\right)\)
Do đó tổng hệ số là: \(\left(3-2.1\right)^9=1\)
Tổng các hệ số của đa thức f(x)\(=\left(2x-5\right)^2\)khi khai triển hằng đẳng thức là