Cho tam giác ABC. Trên AB lấy điểm M và trên AC lấy điểm N, MN cắt BC tại Q. Lấy I là trung điểm của BN, J là trung điểm của CM và K là trung điểm của QA. Chứng minh rằng: I,J,K thẳng hàng
cho tam giác abc nhọn ( ab < ac ) , gọi m là trung điểm của bc . trên tia đối của tia MA, lấy điểm n sao cho ma = mn
a) chứng minh AB // CN
b) tia phân giác của góc ABC cắt tia AM tại I. Tia phân giác của góc BCN cắt tia AM tại J. Chứng Minh BI=CJ
c) Từ I vẽ tia Ix// BC ( tia Ix và điểm B nằm ở hai nửa mặt phẳng đối nhau, bờ là AM) . Trên tia Ix lấy điểm K sao cho IK = BC . chứng minh rằng 3 điểm J , C , K thẳng hàng
( nếu được vẽ giúp hình luôn ạ. )
a) xét tg QMB và tg MNC có
MA=MN(GT)
MB=MC(GT)
=>tam giác QMB=tam giác MNC
cho tam giác abc =8cm ac=12cm lấy điểm m trên cạnh ab sao cho bm=2cm lấy điểm n trên cạnh ac sao cho bn,ac,cn =3cm a, chứng minh rằng mn//bc b,gọi k là trung điểm của bc, tia ak cắt mn tại i, chứng minh rằng ni/kc=ai/ak c, chứng minh rằng i là trung điểm của mn
a: AM=6-2=6cm
AN=12-3=9cm
=>AM/AB=AN/AC
=>MN//BC
b: Xet ΔAKC có NI//KC
nên NI/KC=AI/AK
Xét ΔABK có MI//BK
nên MI/BK=AI/AK
=>NI/KC=MI/BK
c: NI/KC=MI/BK
KC=KB
=>NI=MI
=>I là tđ của MN
cho tam giác ABC có AB = AC , Gọi D là trung điểm của cạnh BC
a, chứng minh tam giác ABD = tam giác ACD và AD vuông tại BC
b, vẽ DM vuông góc cs AB tại M . Trên cạnh AC lấy điểm N sao cho AN = AN . gọi I là giao điểm của AD và MN chứng minh AD vuông góc MN tia I
C, gọi K là trung điểm của CN , Trên tia DK lấy điểm E sao cho K là trung điểm của DE . Chứng minh M,N,E thẳng hàng
cho tam giác abc m là trung điểm của ac q là trung điểm của ab c q cắt bm tại i trên tia bm lấy k sao cho i là trung điểm của bc gọi e là trung điểm của bc a chứng minh m là trung điểm của ac k b kẻ ah song song với bc sao cho n thuộc bc chứng minh ad = ae = ac bc chứng minh ae thẳng hàng
Cho tam giác ABC có BC=9cm. Trên tia AB lấy M sao cho AB=BM. Trên tia AC lấy N sao cho AC=CN.
a)Chứng minh: BC là đường trung bình của tam giác AMN. Tính MN.
b) Kẻ AI là trung tuyến của tam giác ABC. Trên tia AI lấy J sao cho I là trung điểm AJ. Chứng minh: IB//MJ và M,J,N thẳng hàng
Cho tam giác ABC có BC 9cm. Trên tia AB lấy M sao cho AB BM. Trên tia AC lấy N sao cho AC CN.a Chứng minh BC là đường trung bình của tam giác AMN. Tính MN.b Kẻ AI là trung tuyến của tam giác ABC. Trên tia AI lấy J sao cho I là trung điểm AJ. Chứng minh IB MJ và M,J,N thẳng hàng
Cho tam giác ABC có AB < AC. Trên các cạnh AB và AC lần lượt lấy các điểm M và N thay đổi sao cho BM = CN. Gọi K là trung điểm MC, kẻ đường thẳng đi qua trung điểm J của Bc và trung điểm I của MN cắt các đường thẳng AB và AC lần lượt ở D và E
a) CMR : Tam giác IJK và tam giác ADE cân
b) Chứng minh trung điểm I của MN luôn nằm trên một tia cố định
c) Chứng minh rằng trung trực của MN luôn đi qua một điểm cố định
a/ Xét tam giác MNC có:
I trung điểm MN
K trung điểm MC
Vậy IK là đường trung bình của tam giác MNC
=> IK = 1/2 NC (1)
Mặt khác, xét tam giác MCB có:
K trung điểm MC
J trung điểm BC
Vậy KJ là đường trung bình tam giác MCB
=> KJ =1/2 BM (2)
mà BM = CN (gt) (3)
Từ (1), (2) và (3) => IK = KJ
=> Tam giác IKJ cân tại K
Lại có IK // NC (tính chất đường trung bình trong tam giác)
=> góc KIJ = góc CEJ (đồng vị) (4)
KJ // BM (tính chất đường trung bình trong tam giác)
=> góc KJI = ADJ (so le trong) (5)
mà góc KIJ = góc KJI (tam giác IKJ cân tại K) (6)
Từ (4), (5), (6) => góc ADE = góc AED
=> Tam giác ADE cân tại A (đpcm)
b/ Ko biết làm ^^
c/ Ko biết làm ^^
cho tam giác abc có ab = ac, trên tia đối của tia ab lấy điểm m, trên tia đối của tia ac lấy điểm n sao cho am = an. gọi i là trung điểm của bc, k là trung điểm của mncho tam giác abc có ab = ac, trên tia đối của tia ab lấy điểm m, trên tia đối của tia ac lấy điểm n sao cho am = an. gọi i là trung điểm của bc, k là trung điểm của mn
1) Cm: tgiac abi = tgiac aci
2) 3 điểm i,a,k thẳng hàng
MN LÀM NHANH GIÚP MIK NHÉ, MIK CẦN GẤP LẮM R
a) Xét ΔABCΔABC có:
AB=AC(gt)AB=AC(gt)
=> ΔABCΔABC cân tại A.
=> ˆABC=ˆACBABC^=ACB^ (tính chất tam giác cân).
Ta có:
{ˆABM+ˆABC=1800ˆACN+ˆACB=1800{ABM^+ABC^=1800ACN^+ACB^=1800 (các góc kề bù).
Mà ˆABC=ˆACB(cmt)ABC^=ACB^(cmt)
=> ˆABM=ˆACN.ABM^=ACN^.
Xét 2 ΔΔ ABMABM và ACNACN có:
AB=AC(gt)AB=AC(gt)
ˆABM=ˆACN(cmt)ABM^=ACN^(cmt)
BM=CN(gt)BM=CN(gt)
=> ΔABM=ΔACN(c−g−c)ΔABM=ΔACN(c−g−c)
=> AM=ANAM=AN (2 cạnh tương ứng).
b) Theo câu a) ta có AM=AN.AM=AN.
=> ΔAMNΔAMN cân tại A.
=> ˆM=ˆNM^=N^ (tính chất tam giác cân)
Xét 2 ΔΔ vuông BMEBME và CNFCNF có:
ˆMEB=ˆNFC=900(gt)MEB^=NFC^=900(gt)
BM=CN(gt)BM=CN(gt)
ˆM=ˆN(cmt)M^=N^(cmt)
=> ΔBME=ΔCNFΔBME=ΔCNF (cạnh huyền - góc nhọn)
Cho tam giác ABC ,trên cạnh AB và AC lần lượt lấy hai điểm M và N. Biết AM=3cm, BM=2cm, AN=7,5cm , NC=5cm. a) chứng minh rằng MN//BC b) đường trung tuyến AI ( I thuộc BC) của tam giác ABC cắt MN tại K. Chứng minh K là trung điểm của MN