Cho a, b, c thỏa mãn: \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\) và a+b+c\(\ne\)0. Tính giá trị biểu thức P=\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\)
Cho a,b,c khác nhau và khác 0 thỏa mãn a + b + c =0 . Tính giá trị của biểu thức
P = \((\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b})(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a})\)
cho 3 số a,b,c khác 0 và đôi một khác nhay và thỏa mãn a+b+c=0. tính giá trị biểu thức P= \(\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)\left(\frac{b-c}{a}+\frac{c-a}{b}+\frac{a-b}{c}\right)\)
Cho 3 số a,b,c khác nhau và khác 0(b+c,a+c,a+b \(\ne\)0).Thỏa mãn điều kiện \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\).Tính giá trị biểu thức P=\(\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}\)
a) Cho a,b,c đều khác nhau đôi một và \(\frac{a+b}{c}=\frac{b+a}{a}=\frac{c+a}{b}\)
Tính giá trị của biểu thức P=\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
b) Cho abc khác 0 và đôi một khác nhau thỏa mãn a+b+c=0
Tính giá trị biểu thức \(\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)\left(\frac{b-a}{a}+\frac{c-a}{b}+\frac{a-b}{c}\right)\)
a) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\Leftrightarrow\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{c+a}{b}+1\)
\(\Rightarrow\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}\)
TH1: Nếu a + b + c = 0 \(\Rightarrow P=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=\frac{-\left(abc\right)}{abc}=-1\)TH2 : Nếu \(a+b+c\ne0\) \(\Rightarrow a=b=c\)\(\Rightarrow P=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)
b) Đề bài sai ^^
Cho a,b,c là ba số khác 0 và a+b+c khác 0 thỏa mãn:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\). Tính giá trị của biểu thức: P=\(\frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c}\)
Ta có: \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
Suy ra:
\(\frac{a}{b+c}=\frac{1}{2}\Rightarrow a=\frac{b+c}{2}=\frac{1}{2}\times\left(b+c\right)\)
\(\frac{b}{a+c}=\frac{1}{2}\Rightarrow b=\frac{a+c}{2}=\frac{1}{2}\times\left(a+c\right)\)
\(\frac{c}{a+b}=\frac{1}{2}\Rightarrow c=\frac{a+b}{2}=\frac{1}{2}\times\left(a+b\right)\)
Thay \(a=\frac{1}{2}\times\left(b+c\right)\); \(b=\frac{1}{2}\times\left(a+c\right)\); \(c=\frac{1}{2}\times\left(a+b\right)\) vào P ta được:
\(\frac{b+c}{\frac{1}{2}\times\left(b+c\right)}+\frac{c+a}{\frac{1}{2}\times\left(a+c\right)}+\frac{a+b}{\frac{1}{2}\times\left(a+b\right)}\)
\(=\frac{\text{ }1\text{ }}{\frac{1}{2}}+\frac{1}{\frac{1}{2}}+\frac{1}{\frac{1}{2}}\)
\(=2+2+2=6\)
Vậy giá trị của P là 6
Cho 3 số a, b, c khác 0 và khác nhau thỏa mãn điều kiện\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\)
Tính giá trị của biểu thức P= \(\frac{a+b}{c}+\frac{c+a}{b}+\frac{b+c}{a}\)
học tính chất của dãy tỉ số bằng nhau chưa?
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}2a=b+c\\2b=a+c\\2c=a+b\end{cases}}\Rightarrow\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b}{c}=2\)
Vậy \(P=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}=2+2+2=6\)
cho a, b, c là các số thực thỏa mãn: a=8-b; c2=ab - 16. Tính giá trị của a+c.
cho \(\frac{a}{b+c}=\frac{b}{a+c}\left(a\ne\pm b;a\ne-c;b\ne-c\right)\) Tính \(M=\frac{c}{a+b}\)
Tính giá trị biểu thức \(P=\frac{x^5-3x^3-10x+12}{x^4+7x^2+15}\)
Biết x thỏa mãn \(\frac{x}{x^2+x+1}=\frac{1}{4}\)
Cho ba số a,b,c khác 0 thỏa mãn: \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=1\) .
Tính giá trị của biểu thức \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)
2.Cho các số thực phân biệt a,b,c khác 0 và thỏa mãn a+b+c=0.Tính giá trị biểu thức
\(P=\left(\frac{b-c}{a}+\frac{c-a}{b}+\frac{a-b}{c}\right)\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)\)