Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thanh tu
Xem chi tiết
Hoàng Thảo Nguyên
20 tháng 4 2022 lúc 23:04

=1/1.2.3+1/2.3.4+1/3.4.5+............+1/98.99.100

 =12(11.2−12.3+12.3−13.4+...+198.99−199.100)

=12(12−19900)

=12⋅49499900

Hoàng Thảo Nguyên
20 tháng 4 2022 lúc 23:05

cho mình xin lỗi vì đáp án mình gửi lên nó bị lỗi nhá

LuuHieu1107
Xem chi tiết
Thắng Nguyễn
17 tháng 9 2016 lúc 20:47

B=1/1.2.3+1/2.3.4+1/3.4.5+............+1/98.99.100

 \(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{9900}\right)\)

\(=\frac{1}{2}\cdot\frac{4949}{9900}\)

\(=\frac{4949}{19800}\)

soyeon_Tiểu bàng giải
17 tháng 9 2016 lúc 20:49

\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\)

\(B=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\right)\)

\(B=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(B=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{9900}\right)\)

\(B=\frac{1}{2}.\frac{4949}{9900}=\frac{4949}{19800}\)

nguyen toan thang
Xem chi tiết
Le Thi Khanh Huyen
28 tháng 2 2015 lúc 18:05

Ta xét:

\(\frac{1}{1.2}-\frac{1}{2.3}=\frac{2}{1.2.3};\frac{1}{2.3}-\frac{1}{3.4}=\frac{2}{2.3.4};...;\frac{1}{98.99}-\frac{1}{99.100}=\frac{2}{98.99.100}\)

Qua công thức trên, bạn có thể rút ra tổng quát: (đây là mình nói thêm)

\(\frac{1}{n.\left(n+1\right)}-\frac{1}{\left(n+1\right).\left(n-2\right)}=\frac{2}{n.\left(n+1\right).\left(n+2\right)}\)

Ta suy ra:

\(2B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\)

       \(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\)

      Thấy \(-\frac{1}{2.3}+\frac{1}{2.3}=0;-\frac{1}{3.4}+\frac{1}{3.4}=0;...\)

\(\Rightarrow2B=\frac{1}{2}-\frac{1}{99.100}=\frac{1}{2}-\frac{1}{9900}=\frac{4950}{9900}-\frac{1}{9900}=\frac{4949}{9900}\)

\(\Rightarrow B=\frac{4949}{9900}:2=\frac{4949}{19800}\)

Le Thi Khanh Huyen
1 tháng 3 2015 lúc 18:39

Mình nhầm, công thức tổng quát mình nói thêm bạn đổi cái n-2 thành n+2 nha

Lê Quang Sáng
29 tháng 6 2016 lúc 7:38

 1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ............. + 1/ 98.99.100

Th Ngô Sĩ Liên Khánh 5a9
Xem chi tiết
Like cho mình với
21 tháng 8 2017 lúc 18:02

549 + X = 1326
X = 1326 - 549
X = 777
X - 636 = 5618
X = 5618 + 636
X = 6254

Th Ngô Sĩ Liên Khánh 5a9
21 tháng 8 2017 lúc 18:07

549 ,1326 ở đâu zậy bạn  !!! :/

Lâm Hồng Phúc
Xem chi tiết
Nguyễn Huy Tú
12 tháng 3 2017 lúc 12:23

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)

\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}.\frac{4949}{9900}\)

\(=\frac{4949}{19800}\)

Trần Thư
Xem chi tiết
Hồ Thu Giang
2 tháng 8 2015 lúc 10:59

1/1.2.3 + 1/2.3.4 +....+1/98.99.100

= 1/2 . (3-1/1.2.3 + 4-2/2.3.4 +....+ 100-98/98.99.100)

= 1/2 . (3/1.2.3 -1/1.2.3 + 4/2.3.4 - 2/2.3.4 +.......+ 100/98.99.100 - 98/98.99.100)

= 1/2 . (1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 +......+ 1/98.99 - 1/99.100)

= 1/2 . (1/2 - 1/9900)

= 1/2 . 4949/9900

= 4949/19800

EM cui mon toan
Xem chi tiết
TrangMom
17 tháng 5 2021 lúc 22:26

A=11.2.3+12.3.4+13.4.5+...+198.99.100=11.2−12.3+12.3−13.4+...+198.99−199.100=11.2−199.100=494919800

Khách vãng lai đã xóa
༄NguyễnTrungNghĩa༄༂
Xem chi tiết
Trà My
26 tháng 3 2017 lúc 21:37

Đặt \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\)

\(A=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\right)\)

\(A=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(A=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

chỗ nãy rồi bạn tự tính tiếp

༄NguyễnTrungNghĩa༄༂
26 tháng 3 2017 lúc 20:53

KQ la \(\frac{4949}{19800}\)ak cac ban

6a01dd_nguyenphuonghoa.
Xem chi tiết
Nguyễn Ngọc Anh Minh
20 tháng 7 2023 lúc 9:27

a/

\(b=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\)

\(2b=\dfrac{3-1}{1.3}+\dfrac{5-3}{3.5}+\dfrac{7-5}{5.7}+...+\dfrac{99-97}{97.99}=\)

\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}=\)

\(=1-\dfrac{1}{99}=\dfrac{98}{99}\Rightarrow b=\dfrac{98}{2.99}=\dfrac{49}{99}\)

b/

\(c=\dfrac{3-1}{1.2.3}+\dfrac{4-2}{2.3.4}+\dfrac{5-3}{3.4.5}+...+\dfrac{100-98}{98.99.100}=\)

\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+\dfrac{1}{98.99}-\dfrac{1}{99.100}=\)

\(=\dfrac{1}{2}-\dfrac{1}{99.100}\)

c/

\(\dfrac{2}{5}.d=\dfrac{4-2}{2.3.4}+\dfrac{5-3}{3.4.5}+...+\dfrac{100-98}{98.99.100}+\dfrac{101-99}{99.100.101}=\)

\(=\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}+\dfrac{1}{99.100}-\dfrac{1}{100.101}=\)

\(=\dfrac{1}{2.3}-\dfrac{1}{100.101}\Rightarrow d=\left(\dfrac{1}{2.3}-\dfrac{1}{100.101}\right):\dfrac{2}{5}\)