Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Giang Nguyễn
Xem chi tiết
alibaba nguyễn
12 tháng 12 2016 lúc 15:10

Điều kiện: \(\hept{\begin{cases}a>0\\\sqrt{a}-1\ne0\\\sqrt{a}-2\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}a>0\\a\ne1\\a\ne4\end{cases}}\)

Ta có:

\(1P=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

\(=\frac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{a-1-a+2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\)

\(=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)\)

\(=\frac{\sqrt{a}-2}{\sqrt{a}}\)

hưngchibi
29 tháng 6 2018 lúc 14:51

không hiểu nhan

nguyễn thị mai hương
Xem chi tiết
zZz Cool Kid_new zZz
9 tháng 7 2019 lúc 20:46

a

\(ĐKXĐ:a\ne0;a\ne1;a\ne\sqrt{2}\)

\(Q=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

\(Q=\frac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)-\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\)

\(Q=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{a-1-a+2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\)

\(Q=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{1}\)

\(Q=\frac{\sqrt{a}-2}{\sqrt{a}}\)

b

\(Q>0\Leftrightarrow\frac{\sqrt{a}-2}{\sqrt{a}}>0\Leftrightarrow\sqrt{a}-2>0\Leftrightarrow\sqrt{a}>2\Leftrightarrow a>\sqrt{2}\)

Nhi Nhí Nhảnh
Xem chi tiết
Phạm Thị Thùy Linh
30 tháng 11 2019 lúc 20:34

\(a,đkxđ\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

\(b,\)\(A=\left(1+\frac{x+\sqrt{x}}{\sqrt{x}+1}\right).\left(1-\frac{x-\sqrt{x}}{\sqrt{x}-1}\right)\)

\(=\left(1+\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right).\left(1-\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right)\)

\(=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x\)

\(c,A_{max}\Leftrightarrow1-x\)lớn nhất \(\Rightarrow x\)nhỏ nhất

Mà \(x\ge0\)\(\Rightarrow x\)nhỏ nhất \(\Leftrightarrow x=0\)

\(\Rightarrow A_{max}=1\Leftrightarrow x=0\)

Khách vãng lai đã xóa
Trần Ngọc Hà My
Xem chi tiết
Nguyễn Thị Hòa
4 tháng 7 2017 lúc 18:53

\(a,ĐKXĐ:\hept{\begin{cases}a>0\\a\ne1\end{cases}}\)

\(b,A=\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)\left(\frac{a-\sqrt{a}}{\sqrt{a}+1}-\frac{a+\sqrt{a}}{\sqrt{a}-1}\right)\)

\(=\frac{a-1}{2\sqrt{a}}.\left(\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}+1}-\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}-1}\right)\)

\(=\frac{a-1}{2\sqrt{a}}.\frac{\sqrt{a}.\left(\sqrt{a}-1\right)^2-\sqrt{a}\left(\sqrt{a}+1\right)^2}{a-1}\)

\(=\frac{\sqrt{a}\left(\left(\sqrt{a}-1\right)^2-\left(\sqrt{a}+1\right)^2\right)}{2\sqrt{a}}\)

\(=\frac{\sqrt{a}.\left(\sqrt{a}-1-\sqrt{a}-1\right).\left(\sqrt{a}-1+\sqrt{a}+1\right)}{2\sqrt{a}}\)

\(=\frac{\sqrt{a}.\left(-2\right).2\sqrt{a}}{2\sqrt{a}}\)

\(=-2\sqrt{a}\)

\(c,\)Để A= -4 thì 

\(-2\sqrt{a}=-4\Leftrightarrow\sqrt{a}=2\Leftrightarrow a=4\)

Kết bạn với mình nha ....

Hoàng Oanh
Xem chi tiết
Hồng Nguyễn
Xem chi tiết
o0o I am a studious pers...
27 tháng 7 2018 lúc 20:37

I don't now 

sorry 

...................

nha

Hồng Nguyễn
27 tháng 7 2018 lúc 20:52

lượn cho nước nó trong

Phan Lê Kim Chi
Xem chi tiết
Đinh Thu Trang
1 tháng 9 2021 lúc 20:23

xin lỗi bạn nhé mik lớp 7

Khách vãng lai đã xóa
Chau Pham
Xem chi tiết
Nguyễn Hoàng Minh
24 tháng 11 2021 lúc 7:39

\(a,ĐK:x>0;x\ne9\\ b,A=\dfrac{\sqrt{x}+3+\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}}\\ A=\dfrac{2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}=\dfrac{2}{\sqrt{x}+3}\\ c,A>\dfrac{2}{5}\Leftrightarrow\dfrac{2}{\sqrt{x}+3}-\dfrac{2}{5}>0\\ \Leftrightarrow\dfrac{1}{\sqrt{x}+3}-\dfrac{1}{5}>0\\ \Leftrightarrow\dfrac{2-\sqrt{x}}{5\left(\sqrt{x}+3\right)}>0\\ \Leftrightarrow2-\sqrt{x}>0\left(\sqrt{x}+3>0\right)\\ \Leftrightarrow\sqrt{x}< 2\Leftrightarrow0< x< 4\)

Lê Thị Vân Anh
Xem chi tiết