Cho đường tròn (O) nội tiếp tam giác ABC tiếp xúc với các cạnh BC, CA, AB lần lượt tại H, I, K. Vẽ HD vuông góc IK. Chứng minh góc ABD = góc ACD. Giúp mình nha.
Cho đường tròn (O) nội tiếp tam giác ABC tiếp xúc với các cạnh BC, CA, AB lần lượt tại H, I, K. Vẽ HD vuông góc IK. Chứng minh góc ABD = góc ACD.
Cho đường tròn (O) nội tiếp tam giác ABC tiếp xúc với các cạnh BC, CA, AB lần lượt tại H, I, K. Vẽ HD vuông góc với IK, chứng minh rằng góc ABD bằng góc ACD.
Cho đường tròn (O) nội tiếp tam giác ABC tiếp xúc với các cạnh BC, CA, AB lần lượt tại H, I, K. Vẽ HD vuông góc IK. Chứng minh góc ABD = góc ACD.
Giúp mình nha.
(O) tiếp xúc với BC, CA, AB tại H, I, K \Rightarrow OK vuông với KB ở K.
Mà HD vuông với KD ở D.
∠KBD=∠OKD∠KBD=∠OKD Hay ∠ABD=∠OKI∠ABD=∠OKI
Tương tự có ∠ACD=∠OIK∠ACD=∠OIK
(O) có ΔΔOIK cân ở O \Rightarrow ∠OKI=∠OIK
đó bạn nhé nhớ k nhe
bạn viết lại giùm mình đc ko, chứ mình ko thấy gì hết.
Cho tam giác ABC không cân. Đường tròn tâm I nội tiếp tam giác , tiếp xúc với các cạnh BC, CA, AB lần lượt tại A', B', C' . Đường thằng B'C' cắt BC tại D. Chứng minh ID vuông góc với AA'
\(\overrightarrow{ID}.\overrightarrow{AA'}=\overrightarrow{ID}\left(\overrightarrow{IA'}-\overrightarrow{IA}\right)=\overrightarrow{ID}.\overrightarrow{IA'}-\overrightarrow{ID}.\overrightarrow{IA}=IA'^2-\overrightarrow{ID}.\overrightarrow{IA}\)
\(=IA'^2-\left(\overrightarrow{IC'}+\overrightarrow{C'D}\right)\overrightarrow{IA}=IA'^2-\overrightarrow{IC'}.\overrightarrow{IA'}-\overrightarrow{C'D}.\overrightarrow{IA}=IA'^2-IC'^2-0\) (vì AI vuông góc với C'B')
\(=r^2-r^2=0\) (r là bán kính đường tròn nội tiếp tam giác ABC)
ĐFCM
Cho tam giác ABC , AB> AC ngoại tiếp đường tròn (I ) và nội tiếp đường tròn (O). Đường tròn (I ) tiếp xúc với các cạnh BC, CA, AB lần lượt tại D, E, F. Gọi H là hình chiếu vuông góc của D trên EF. Đường tròn ngoại tiếp tam giác AEF cắt đường tròn (O) tại K (K khác A).
a) Chứng minh HD là phân giác của góc BHC .
b) Chứng minh ba điểm I, H, K thẳng hàng.
Cho tam giác ABC nội tiếp đường tròn tâm O và AB<AC . Vẽ AH vuông góc với BC tại H . đường tròn đường kính AH lần lượt cắt AB ,AC tại I và K . Chứng minh ba đường thẳng AD , IK và BC đông qui
giúp em vs
1)Cho tam giác nhọn ABC (AB<AC) nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC, K là giao điểm thứ hai của AH với đường tròn (O). Đường thẳng đi qua H và vuông góc với OA cắt BC ở I. Chứng minh rằng IK là tiếp tuyến của đường tròn (O)
2)Cho tam giác ABC (AB<AC) nội tiếp đường tròn (O), đường trung tuyến AM. Lấy điểm D trên cung BC không chứa A sao cho góc BAD= góc CAM. Chứng minh góc ADB= góc CDM
3)Cho tam giác ABC nội tiếp đường tròn O tại D. Đường tròn (D;DB) cắt đường thẳng AB tại Q (khác B), cắt đuòng thẳng AC tại P (khác C). Chứng minh rằng AO vuông góc PQ
Các bạn giúp mình nhé để mình làm cho xong bài tập kẻo xuân này con không về
1)Cho tam giác nhọn ABC (AB<AC) nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC, K là giao điểm thứ hai của AH với đường tròn (O). Đường thẳng đi qua H và vuông góc với OA cắt BC ở I. Chứng minh rằng IK là tiếp tuyến của đường tròn (O)
~~~~~~~~~ Bài làm ~~~~~~~~~
Ta có: \(\widehat{HBD}=\widehat{DAC}\) (Cùng phụ với \(\widehat{ACB}\))
\(\widehat{KBD}=\widehat{DAC}\)( Góc nối tiếp cùng chắn cung \(KC\))
\(\Rightarrow\widehat{HBD}=\widehat{KBD}\)
Ta lại có: \(BD\perp HK\)
\(\Rightarrow BD\) là đường trung trực của \(HK\)
\(\Rightarrow\Delta IHK\) cân tại \(I\)
\(\Rightarrow\widehat{BKD}=\widehat{BHD}=\widehat{AHQ}\)
Lại có:\(\widehat{DKO}=\widehat{HAO}\)( \(\Delta OKA\) cân tại \(O\))
Vì vậy: \(\widehat{DKO}+\widehat{BKD}=\widehat{HAO}+\widehat{AHQ}=90^0\)
\(\Rightarrow\widehat{KIO}=90^0\)
\(\Rightarrow IK\)là tiếp tuyến của đường tròn \(\left(O\right)\)
(Hình vẽ chỉ mang tính chất minh họa cái hình vẽ gần cả tiếng đồng hồ :)) )
Ủa bạn ơi sao phụ nhau? Dòng đầu ấy
Đúng rồi bạn. Phụ nhau ý nghĩa là ^HBD + ^ACB = 90^0 và tương tự như góc kia. (Tam giác vuông ý)
giúp em với nha
cho tam giác ABC nội tiếp đường tròn (O) (AB<AC) . Phân giác trong của góc A cắt (O) ở M , phân giác ngoài của góc A cắt (O) tại N .
a . CM : MN vuông góc BC
b. gọi O1 , O2 lần lượt là tâm đường tròn ngoại tiếp tam giác ABD ; ACD . CM : MB là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD và B; O1 ; N thẳng hàng
c . chứng minh : tam giác AO1O2 đồng dạng ABC
d . CM : OO1 = OO2