1/(5*8)+1/(8*11)+..........+x/(x*(x+3))=101/1540
x=?
1/5*8 + 1/8*11 + 1/11*14 + 1/x*(x+3) = 101/1540
1/5*8+1/8*11+...+1/x*(x+3)=101/1540
\(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{x.\left(x+3\right)}=\frac{101}{1540}\)
\(3.\left(\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{x.\left(x+3\right)}\right)=3.\frac{101}{1540}\)
\(\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{x.\left(x+3\right)}=\frac{303}{1540}\)
\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}\)
\(\frac{1}{x+3}=\frac{308}{1540}-\frac{303}{1540}\)
\(\frac{1}{x+3}=\frac{5}{1540}=\frac{1}{308}\)
=> x + 3 = 308
=> x = 308 - 3
=> x = 305
Vậy x = 305
\(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{x.\left(x+3\right)}=\frac{101}{1540}\)
\(3.\left(\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{x.\left(x+3\right)}\right)=3.\frac{101}{1540}\)
\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}\)
\(\frac{1}{x+3}=\frac{5}{1540}=\frac{1}{308}\)
=> x + 3 = 308
=> x = 308 - 3
=> x = 305
Vậy x = 305
1\5*8+1\8*11+....+1\x*(x+3)=101\1540
tim x
1\5*8+1\8*11+....+1\x*(x+3)=101/1540
1/5-1/8+1/8-1/11+....+1/x-1/(x+3)=101/1540
1/5-1/(x+3)=101/1540
1/(x+3)=1/5-101/1540
1/(x+3)=207/1540
x+3=1540/207
x=1540/207-3
x=919/207
tìm x
a) 1/5 nhân 8+1/8 nhân 11+1/11 nhân 14+......+1/x(x+3)=101/1540
Tìm x biết 1 phần 5•8 + 1 phần 8•11 + 1 phần 11•4 + •••+ 1 phần x •(x+3) = 101 phần 1540
\(\frac{1}{5.8}\)+\(\frac{1}{8.11}\)+\(\frac{1}{11.14}\)+........+\(\frac{1}{x.\left(x+3\right)}\)=\(\frac{101}{1540}\)
3(.\(\frac{1}{5.8}+\frac{1}{8.11}\)+\(\frac{1}{11.14}+.......+\frac{1}{x.\left(x+3\right)}=\frac{101}{1540}.3=\frac{303}{1540}\)
\(\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+.....+\frac{3}{x\left(x+3\right)}=\frac{303}{1540}\)
\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+....+\frac{1}{x}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}=\frac{1}{308}\)
=>\(x+3=308\)
\(x=308-3=305\)
Vậy \(x=305\)
\(\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)
=> \(\frac{1}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{101}{1540}\)
=> \(\frac{1}{5}-\frac{1}{x+3}=\frac{101}{1540}:\frac{1}{3}\)
=> \(\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)
=> \(\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}\)
=> \(\frac{1}{x+3}=\frac{1}{308}\)
=> x + 3 = 308
x = 308 - 5
x = 303
Tìm x biết : 1/5×8+1/8×11+1/11×14+…+1/x×(x+3)=101/1540
Giải chi tiết nha ! Cảm ơn nhìu (=^.^=) (=^.^=) (=^.^=)
Pikachu đơn giản thì làm thử đừng nói mà ko làm nha ^_^
duyệt đi
\(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1504}\)
(=)\(\frac{1}{3}.\left(\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{x\left(x+3\right)}\right)=\frac{101}{1540}\)
(=)\(\frac{1}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+..+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{101}{1540}\)
(=)\(\frac{1}{3}\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{101}{1540}\)
(=)\(\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}=\frac{5}{1540}=\frac{1}{308}\)
\(\Rightarrow\)x=305
1\5•8+1\8•11+...+1\x•(x+3)=101\1540
Tìm x, biết rằng :
1/ 5 . 8 + 1/ 8 . 11 + 1/ 11 . 14 + ... + 1/ x . ( x + 3 ) = 101/ 1540
\(\frac{1}{3}\left(\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{x\left(x+3\right)}\right)=\frac{101}{1540}\)
\(\frac{1}{5}+\frac{1}{8}-\frac{1}{8}+\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{101}{1540}:\frac{1}{3}\)
\(\left(\frac{1}{5}-\frac{1}{x+3}\right)+\left(\frac{1}{8}-\frac{1}{8}\right)+...+\left(\frac{1}{x}-\frac{1}{x}\right)=\frac{303}{1540}\)
\(\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}=\frac{1}{308}\)
=>x+3=308
x=308-3
x=305
Vậy x=305
1 phan 5 nhan 8 cong 1 phan 8 nhan 11 cong 1 phan 11 nhan 14 +..........+1 phan x nhan (x+3)=101 phan 1540