tìm 3 số nguyên dương liên tiếp sao cho tổng của chug bằng tích của chúng
tìm 3 số nguyên dương liên tiếp biết rằng tổng của chúng bằng tích của chúng.
Ta có a.b.c = a+b+c
Giả sử a = b = c ta có a^3 = 3a => a^2 = 3. Ptrình này không cho nghiệm nguyên dương, nên a; b; c là 3 số nguyên dương phân biệt.
Tìm các số nguyên dương:
Giả sử a là số lớn nhất trong 3 số. Ta có a + b + c = a.b.c < 3a. Hay tích b.c <3. Vì a; b; c là các số nguyên dương; b.c <3. Do b;c nguyên dương nên tích b,c nguyên dương hay b.c = 1 hoặc b.c =2. Mặt khác chứng minh được b khác c nên b và c chỉ có thể là 1 và 2. Ở đây ta giả sử c là 1. thì b là 2. (b khác 2 thì tích b.c > 3 là vô lý).
Vậy ta có 1 + 2 + a = 1.2.a hay 3+a = 2a => a = 3.
______________________________________________
li-ke cho mk nhé bn nguyễn thị huyền thương
Bài 3: Tìm bốn số nguyên tố liên tiếp, sao cho tổng của chúng là số nguyên tố.
Bài 4: Tổng của hai số nguyên tố có thể bằng 2003 được không?
Bài 5: Tìm hai số nguyên tố, sao cho tổng và tích của chúng đều là số nguyên tố.
Bài 6: Tìm số nguyên tố có ba chữ số, biết rằng nếu viết số đó theo thứ tự ngược lại thì ta được một số là lập phương của một số tự nhiên.
Bài 7: Tìm số tự nhiên có bốn chữ số, chữ số hàng nghìn bằng chữ số hàng đơn vị, chữ số hàng trăm bằng chữ số hàng chục và số đó viết được dưới dạng tích của ba số nguyên tố liên tiếp.
Bài 8: Một số nguyên tố p chia cho 42 có số dư r là hợp số. Tìm số dư r.
Bài 9: Hai số nguyên tố sinh đôi là hai số nguyên tố hơn kém nhau 2 đơn vị. Tìm hai số nguyên tố sinh đôi nhỏ hơn 50.
Bài 10: Tìm số nguyên tố, biết rằng số đó bằng tổng của hai chữ số nguyên tốt và bằng hiệu của hai số nguyên tố.
mình cần gấp mong mọi người giúp mình
tìm tổng của 4 số nguyên dương liên tiếp biết tích của chúng bằng 120
Tìm 4 số nguyên tố liên tiếp , sao cho tổng của chúng là số nguyên tố2.Tổng của 2 số nguyên tố có thể bằng 2003 hay không ?3. Tìm 2 số tự nhiên, sao cho tổng và tích của chúng đều là số nguyên tố.
Giải cả bài nha
1. Tìm 4 số nguyên tố liên tiếp , sao cho tổng của chúng là số nguyên tố
2.Tổng của 2 số nguyên tố có thể bằng 2003 hay không ?
3. Tìm 2 số tự nhiên, sao cho tổng và tích của chúng đều là số nguyên tố.
1. 2,3,5,7:2+3+5+7=17(nguyên tố)
2.Có: 2001+2
3.2 và 1:2+1=3(nguyên tố);1.2=2(nguyên tố)
Tìm 3 số nguyên dương sao cho tổng của chúng bằng tích của chúng
tìm 3 số nguyên dương sao cho tổng của chúng bằng tích của chúng
gọi ba số đó lần lượt là: x;y;z (x;y;z >0 )
theo đề ta có:
x+y+z=xyz
=>\(\frac{x+y+z}{xyz}=\frac{xyz}{xyz}\)
\(\Leftrightarrow\frac{x}{xyz}+\frac{y}{xyz}+\frac{z}{xyz}=1\)
\(\Leftrightarrow\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}=1\)
Nếu \(x\ge y\ge z\ge1\)thì
\(1=\frac{1}{yz}=\frac{1}{xz}=\frac{1}{xy}\le\frac{1}{z^2}+\frac{1}{z^2}+\frac{1}{z^2}=\frac{3}{z^2}\)
=>\(1\le\frac{3}{z^2}\)
\(\Leftrightarrow z^2\le3\)
nên chỉ có z=1 mới thỏa mãn \(z^2\le3\text{ và }z>0\)
suy ra 3 số đó là 1;2;3
gọi ba số đó lần lượt là: x;y;z (x;y;z >0 )
theo đề ta có:
x+y+z=xyz
=>x+y+zxyz =xyzxyz
⇔xxyz +yxyz +zxyz =1
⇔1yz +1xz +1xy =1
Nếu x≥y≥z≥1thì
1=1yz =1xz =1xy ≤1z2 +1z2 +1z2 =3z2
=>1≤3z2
⇔z2≤3
nên chỉ có z=1 mới thỏa mãn z2≤3 và z>0
suy ra 3 số đó là 1;2;3
Tìm 3 số nguyên dương sao cho tổng của chúng bằng tích của chúng
Ta có a.b.c = a+b+c
Giả sử a = b = c ta có a^3 = 3a => a^2 = 3. Ptrình này không cho nghiệm nguyên dương, nên a; b; c là 3 số nguyên dương phân biệt.
Tìm các số nguyên dương:
Giả sử a là số lớn nhất trong 3 số. Ta có a + b + c = a.b.c < 3a. Hay tích b.c <3. Vì a; b; c là các số nguyên dương; b.c <3. Do b;c nguyên dương nên tích b,c nguyên dương hay b.c = 1 hoặc b.c =2. Mặt khác chứng minh được b khác c nên b và c chỉ có thể là 1 và 2. Ở đây ta giả sử c là 1. thì b là 2. (b khác 2 thì tích b.c > 3 là vô lý).
Vậy ta có 1 + 2 + a = 1.2.a hay 3+a = 2a => a = 3.
______________________________________________
li-kecho mk nhé bn Hoàng Khánh Linh
LxP nGuyỄn hÒAnG vŨ làm bài nào cũng có dấu gạch dưới rồi đến câu **** cho mk nhé bn
mình thấy bài giải của bạn LxP nGuyỄn hOÀnG vŨ giống copy quá!
Thấy giống câu trả lời của Phạm Văn Tuấn trả lời thevu ấy
Tìm 3 số nguyên dương sao cho tổng của chúng bằng tích của chúng
Giải lại nhá, hôm qua viết nhầm rồi
Gọi 3 số đó là x;y;z (x;y;z\(\ne\)0)
Theo đề bài ta có: x+y+z=xyz
\(\Rightarrow\frac{x+y+z}{xyz}=\frac{xyz}{xyz}\)
\(\Rightarrow\frac{x}{xyz}+\frac{y}{xyz}+\frac{z}{xyz}=1\)
\(\Rightarrow\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}=1\)
Nếu \(x\ge y\ge z\)thì \(\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}=1\le\frac{1}{z^2}+\frac{1}{z^2}+\frac{1}{z^2}=\frac{3}{z^2}\)
\(\Rightarrow1\le\frac{3}{z^2}\)
\(\Rightarrow z^2\le3\)nên chỉ có z=1 thỏa mãn \(z^2\le3\)và z>0
=>y=2 và x=3
Vậy z=1;y=2;x=3
Gọi 3 số đó là: x;y;z(x;y;z\(\ne\)0)
Theo đề bài ta có: x+y+z=xyz
\(\Leftrightarrow\frac{x+y+z}{xyz}=\frac{xyz}{xyz}\)
\(\Leftrightarrow\frac{x}{xyz}+\frac{y}{xyz}+\frac{z}{xyz}=1\)
\(\Leftrightarrow\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}=1\)
Nếu \(x\ge y\ge z\) thì \(1=\frac{1}{yz}=\frac{1}{xz}=\frac{1}{xy}\le\frac{1}{z^2}+\frac{1}{z^2}+\frac{1}{z^2}=\frac{3}{z^2}\)
\(\Rightarrow1\le\frac{3}{z^2}\)
\(\Rightarrow z^2\le3\) nên chỉ có z=1 thỏa mãn \(z^2\le3\) và z>0
=>y=2 và x=3
Vậy z=1;y=2;x=3